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INTRODUCTION.

Trars Memoir is divided into three Parts: Part I treats of systems of cireles in one
plane ; Part II. treats of systems of circles on the surface of a sphere ; and Part I1I.
of systems of spheres; the method of treatment being that indicated in two papers
among CLIFFORD’S ¢ Mathematical Papers,’ viz., “ On Power-Coordinates” (pp. 546-555)
and “ On the Powers of Spheres” (pp. 832-336). These two papers probably contain
the notes of a paper which was read by CLIFFORD to the London Mathematical Society,
Feb. 27, 1868, “ On Circles and Spheres,” which was not published (‘ Lond. Math. Soc.
Proc.,” vol. 2, p. 61). The method of treatment indicated in these papers of CLIFFORD’S
was successfully applied by the author to prove some theorems given by him in a paper
“On the Properties of a Triangle formed by Coplanar Circles” (1885) (* Quarterly
Journal of Mathematics,” vol. 21), and then to the extension of those theorems to
the case of spheres. But as Crirrorp’s papers contained some suggestions as to
the application of the same method to the treatment of Bi-circular Quartics, he was
induced to develop these ideas and extend the results to the case of the analogous
curves on spheres—called by Professor CAYLEY Spheri-quadrics—and also of cyclides.
It is impossible to say whether, if at all, CLirrorDp was indebted to DarBoUX for any
of the ideas contained in the two papers cited above ; but it is noticeable that they
coincide in a great measure with those expressed by DArBoux in several papers
published during the years 1869-1872.

In Part I. (§§ 1-124) of this Memoir a general relation is first shown to subsist
between the powers of any two groups of five circles; the definition of the power of
two circles, as the extension of STEINER'S “ power of a point and a circle,” being due
to DArRBoUX, but the definition is here slightly modified so as to include the case
when the radius of either (or each) circle is infinite. In Chapter 1I. an extension of
the definition so as to apply to a certain system of conics is given ; this is practically
adapted from Chapter II. in Professor Casev’s Memoir “ On Bicircular Quartics”
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(1867) (‘Irish Acad. Trans.,’ vol. 24). In Chapter IIL the general theorem is applied to
several interesting cases of circles ; some of the results of this chapter are believed to
be new. In Chapter IV. the problem of drawing a circle to cut three given circles at
given angles is considered, and the circles connected with a triangle formed by three
circles, which are analogous to the circumcircle, the inseribed and escribed, and the
nine-points circle of an ordinary triangle are discussed. The results are the same,
with one or two exceptions which may be new, as arrived at, but in a different
manner, in the paper by the author in the ‘ Quarterly Journal’ (vol. 21). In
Chapter V. the power-coordinates of a point (or circle) are defined, and the equations
~of circles, &e., discussed ; and it is shown that there are two simple coordinate systems
of reference ; one consisting of four orthogonal circles, mentioned by Crirrorp (CASEY
and DArBoUX consider five orthogonal spheres), the other consisting of two orthogonal
circles and their two points of intersection, which seems to have been indicated for the
first time by Mr. Homersaam Cox in a paper ¢ On Systems of Circles and Bicircular
Quartics” ( Quarterly Journal,” vol. 19, 1883). In Chapter VI. the general equa-
tion of the second degree in power-coordinates is discussed, and in Chapter VIL.
Bi-circular Quartics are classified according to the number of principal circles which
they possess. In Chapter VIII. the connexion between Bi-circular Quartics and their
focal conics is briefly indicated, the circle of curvature is found, and an expression
for the radius of curvature at any point of a bi-circular quartic is investigated. In
these last three chapters the results are probably all old, but as the method employed
is different from any previously used to discuss these curves in detail, it may not be
without interest.

In Part T1. (§§ 125-198) almost all the results given in Part I. are extended, with
occasionally some slight modifications, to the case of small circles on a sphere and
spheri-quadrics.

Tn Part TIT. (§§ 199-287) the same order is followed as in Part I.; most of the
results in Chapter IIL, Part I., are extended to the analogous systems of spheres.
In Chapter IIL, however, it is shown that though there is a group of spheres
corresponding to the circum-sphere of a tetrahedron, and though several analogous
theorems are true for what correspond to the inscribed and escribed spheres, yet there
is no analogy to Fmuersacu’s theorem. Chapter IV. corresponds exactly to
Chapter V. in Part I., and in Chapter V. the general equation of the second degree in
power-coordinates is shown to represent a cyclide, and the equation is discussed in the
same manner as in Part L., Chapter VI. The reduction, however, of the general
equation to its simplest form presents some difficulty. In Chapter VI cyclides are
briefly classified in the order in which they present themselves in reducing the general
equation, and in Chapter VIIL a few miscellaneous propositions are discussed, as, for
instance, the determination of the locus of the centres of the bitangent spheres, i.c.,
the Focal Quadrics.

Tt may be convenient to state here the Memoirs consulted :—
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Casgy.
“ On Bicircular Quartics ” (1867),  Irish Acad. Trans.,” vol. 24.
“ On Cyclides and Sphero-Quartics ” (1871), ¢ Phil. Trans.,” vol. 161, pp. 585-721.
CriFrorp.*
“ On the Powers of Spheres” (1868), ¢ Mathematical Papers.” 1882. Pp. 332-336.
“Of Power-Coordinates in general ” (1866), ¢ Mathematical Papers.” 1882.
(Appendix.) Pp. 546-555.
Cox, H. ¢ On Systems of Circles and Bicircular Quartics,” ¢ Quart. Journ. Math.,’
vol. 19, 1883, pp. 74-124.
DarBoux.
“ Sur les Relations entre les groupes de Points, de Cercles et de Sphéres dans le
plan et dans I'espace,” ¢ Annales de I'fcole Normale Supérieure,’ vol. 1, 1872,
pp- 323-392.
¢ Sur une Classe remarquable de Courbes et de Surfaces Algébriques.” Paris, 1873.
SALMON.
¢ Higher Plane Curves.” 3rd edition, 1879, pp. 240-253.
“ Geometry of Three Dimensions.” 4th edition, 1882, pp. 527-536.

PART I1.—SYSTEMS OF CIRCLES IN ONE PLANE.

CHAPTER I.—GENERAL SYsTEMS OF CIRCLES.

Definitions. §§ 1-5.

1. The power of two circles (or of one circle with respect to the other) is the square
of the distance between the centres of the circles, less the sum of the squares of their
radil.

Thus denoting the power of two circles whose radii are ), 7, by 4 if d; , be the
distance between their centres, we have

P e ®
T = P g =1 =7y,

or if o, , be the angle at which the circles intersect we have
Ty, o==277" COS @] o

2. If one of the circles reduces to a point, then the power becomes equal to the square
of the tangent from the point to the circle. In this case the definition agrees with
STEINER’S definition of the power of a point with respect to a circle ( CRELLE, Journ.
Math.,’ vol. 1, 1826, p. 164). The use of the word power is of great antiquity—the area

[* The probable date of these papers is given as 1866 and 1868 respectively. Cf. Preface to ¢ Math.

Papers,” pp. xxi, xxii; and also note on page 332.—October, 1886.]
3qQ2
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of the parallelogram formed by joining the points, in which two parallel tangents to a
hyperbola meet the asymptotes, was called the «“ Power of the Hyperbola ”—and the
name was borrowed by STEINER, in the paper quoted above, which was written in 1826,
to express the constant rectangle of the segments of any chord of a circle through a
point, and this rectangle he called the power of the point with respect to the circle.
STEINER also extended his definition thus : if O be one of the centres of similitude of
two circles whose centres are A, B: and if a chord through O cut the circles in P and
Q respectively, but go that AP, BQ are not parallel, then he proposed to call the
rectangle OP, OQ the power of the two circles with respect to O.

Darpoux seems to have been the first to give the definition of the power of two
circles, as used in this memoir, in a paper written in 1872 and published in the
‘Annales de I'Ticole Normale Supérieure,” vol. 1. Crirrorp also gives the same
definition in a paper, the probable date of which is said to be 1866, given in the
Appendix to his ¢ Mathematical Papers’ (1882); but the paper itself does not seem
to have ever been published.

Mr. Homersram Cox, in a paper published in the ¢ Quarterly Journal of Mathe-
matics * (vol. 19, 1883), has shown that the power of two circles may also be defined
as the product of two circles.

3. If the equations of two circles be

20,42y e =0, . . . . . . . . (1)

2yt 20 42y =0, . . . . . . . . (2)
we have i

w, =0 0= 2019y~ fo - - - o o . o o . (3)

4. Tt will be convenient to define the power of a straight line and a circle as twice
the perpendicular from the centre of the circle on the line; and the power of two
straight lines as twice the cosine of the angle between them.*

Thus the power of (1) and the straight line

2 co8 @2y sin a-F2p=0, . . . . . . . . (4)

is given by
7 =2p+2g;, cos a+-2fysine. . . . . . . . . (H)

Thus regarding (4) as a degenerate form of (2), (5) may be considered as a particular
case of (3).

[* We can easily show that these definitions are included in that given in § 1. Thus, considering a
straight line as a circle of infinite radius, B say, the power of a circle, radius 7, with respect to it
=(p+R)2—1?—R?==2pI, in the limit, p being the perpendicular from the centre of the circle on the
straight line. Similarly the power of two straight lines, inclined at an angle w, =217 cos w. Conse-
quently, as we are going to deduce our results from a certain symmetrical determinant, we may ignore
these factors R, 1, and define these powers as in § 4.—22nd October, 18306.]
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Again, the power of (4) and
— 2 cos B—2y sin B+429=0,

>

is given by
m=—2cos B (a—B)=—2 cos & cos B—2 sin a sin B
which may also be considered as a particular case of (3).
The equation to the line at infinity may be written
O0x+0y-+1=0.

Hence, denoting this line by the symbol 6, we shall have

m,»=1, if & denote any circle, or point,
and
m,, =0, if x denote any straight line,

and
1m,,=0, of course.

5. It will be convenient to observe here, that if #’ denote the power of the two
circles which are respectively the inverse curves of (1) and (2) with respect to any

circle, whose centre is the origin O and radius R ; then
,__ Rt
T="—17;
Gyl

t.c., denoting the circles by S,, S,, and the circles inverse to them by 8;, §',, since

5] =Ty,s Co= 0,8
71-3'1‘ Sy 77.5‘1, S

— = .
\/ 0, sy 0, 8y \/ T70,8,-770, 5,

and the formula is still true if either or both circles degenerate into straight lines.
Thus if «, y denote any circles, straight lines, or points, the expresssion

1s unaltered if the circles be inverted with respect to any circle whose centre is O.

General Theorems. §§6-8.

6. If we have given a system of five circles (1, 2, 3, 4, 5), their powers with respect
to any five other circles (6, 7, 8, 9, 10) are connected by identical relation, which may

be expressed in the umbral notation by

1,2,3,4,5 \
H(a, 7,89, 10)"0‘

The word “circle” being intended to include a point, a straight line, or the line at

infinity.
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This is easily proved by multiplying together the two matrices

1, 29, 2/, ¢ ¢ —96 —Jo 1
L 295 2/ 6 e =9 —J» 1
1, 295, 25 ¢ ¢ —9s —Ju 1
1, 29, 20, ¢ €y, —99 —Jo 1
L 295 2 o G =~ —JSin 1
and we obtain at once the equation
The Tup o TLe TLe T | =0 . o o . . (6)

o6 Mo To8  To9 T
3,60 Mgy T8 T3,9, 7310

Ta60  Tar T8 749 Ty10

Ts,60 T 758 T 7510

which may be conveniently written

1,2,3,4,5 \__ )
H<6,7,8,9,10>'—0“ N )

7. An important particular case is when 0 is a member of both systems : then we
have

0,1,2,3,4\
n<0;5,6,7’8)_o,. )
or
, L 1, 1, 1 =0.

s T Tue  Tup s

0
1
1, g5 Toe Tap  Tag
1, g5 e Ty Tag
1

s a5 Mg T4y 4,8

Whence, denoting the angle of intersection of the two circles (z, %) by a,,, we
have, provided none of the circles reduce to points,

1 1 1 1 =0. . . (9)
0, L ) e )
7y Ts 77 s
1 o
/;", COS wl,s, COS w116’ COS (z)l, 7, COS wl’s
1
1
77, CcOS w2’5, coS (02, i) COS 0)2,7, COS wg,g
2
1
;?—’, COS (1)3, ) CcOS w3, ) COS w3’7, COS w3,8
1 .
:}'—’ [¢{0]5} w4, 3] COoS a){l‘, i1} COS w4,7, COS w{hs
4
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This is true if any of the circles are replaced by straight lines. :

If we take the two systems (1, 2, 8, 4), (5, 6, 7, 8) as coincident, we have an
equation which gives us the radii of the two circles which cut three given circles at
given angles.

Thus, if three given circles, radii 7, r,, 75 cut at angles a, B, y, the radii of the
circles which cut them at angles ¢, ¢,, ¢; respectively, are the roots of the equation -

o L 1 1 1 =0.. . . . (10)
) ) ) ) )
(! Ta 3 P
1
e -1, cosy, cosfB, cos ¢,
1
1
.o CO8Y,  — 1, coS &,  COS ¢y
1
> €8 B, cosa, —1, oS ¢y
3
1
. cos ¢y, COS ¢y, cCOS¢hy, —1

8. Another important theorem is easily deduced by the method employed in § 6,

thus
H<;’ Z’ ’?’g): 1, 29y, Zfi’ € X Cs s —f:’v 1 5
B L, 29y 2fy ¢ Ceo —90 —Jo 1
1, 293: ZfS’ Cg G —Yp _f7’ 1
1, 29, b c4 e, —9s —Jfs 1
hence we have at once
1,2,3,4\12_. /1,284 5,6,7,8
{H(\5,6,7,8>} _H<1,2,3,4>XH<5,6,7,8>' ce s (1)

CaaPTER II.—ExTENsION oF REsurrs or CuAPTER I
Preliminary Remarks.—S$§ 9-12.

9. Dr. CasEY has shown in his memoir “On Bicircular Quartics,” that any two
conics whose equations can be put in the form S—I1?=0, and S—M?=0, possess a
pair of angles which he calls their anharmonic angles, and which he shows to be
analogous to the angle of intersection of two circles. Thus, if &', 8” denote the
results of substituting the coordinates of the poles of L, M respectively in S, and R
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the result of substituting the coordinates of the pole of L in M, then the anharmonic
angles 6, ¢ of the two conics are defined by :—

1—R=y/ (T~ §)(1—5").cos 0,

1+R=+/(1—8)(1—8").cos ¢.

A proof of a theorem similar to that given in § 6 of the present memoir is to be
found in SAatmon’s ¢ Conics,” p. 366.
10. Let us take as the equations of the three conics

S=a+y?427=0,
a* (1P 4-2%) = (af +yg +2h =0,
a2 — (af +yg 2 )P=0.

Then following the method used in CasEY’s paper (§ 126), we form the discriminant
cof
al = (af+yg +2h) F Mo St (af +yg +2h) ;=0 ;
and we obtain
(0?8 W+-2(ad’ — RN a?—S=0;

and so, if we take

ac’ —R =+/(a*—8")(a?~-8).cos 0,
where R=ff"+gg'+hb', S=f>+g*+1, 8'=f*+¢*+~?; we have for the tact-

invariant of the conics a*S—12, a*S—M?, (a®*—8)(a*—8') sin® =0 ; or #=0.
11. Again, forming the discriminant of

S (f+yg +2h)+MoSTF (@f +yg 21"} =0,

we obtain for the tact-invariant, ¢=0, where

ad/ +R =+/(a?—8)(a*—8) cos ¢.

12. Either of these expressions, a¢’4R, might be defined as the power of the two
conics a*S—12 a*S—M? For if 0:;1, it is evident, as CAsEY has shown, that the
pencil formed by the lines L, M, and the chords of contact of the two line pairs which can
be drawn to touch S from the points of intersection of a*Li—a?M with ¢*S—12, is
harmonic; and so H:g is the condition corresponding to the case of two circles cutting
orthogonally. In this case the power vanishes.
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Let us define, then, the power of the two conics a*S—1I, and a*S—M?, as the
expression aa +R, and let us denote this by #. Thus

m=ad' +ff +g9 +hl ;

the conic S being supposed reduced to its standard form, and f; ¢, b being the co-
ordinates of the pole of L with respect to S.

Greneral Theorein.—§§ 13-15.

13. If we have any two systems of conics, say (1, 2, 3, 4, 5), (6, 7, 8, 9, 10),
inscribed in the same conic S, the powers of the conics of one system with respect to
the conics of the other system are connected by the relation

€

1,2,8,4, 5
L A —_ 9
II<6’ 789 10)‘0’ e 59

7.¢., the same equation as in § 6.
Thus taking the same equations as in § 10, by multiplying the matrices

an S g M o Jo 9o hg >
Ay Jor Yo Iy S 9n My
dg, J3 s Dy as,  fe 9y g
G S Go T ay oo oy
s S In N o Jio G P
we have at once the relation
TLe Ty TLs  TLe 1o =0. . . . . . (13)

To, 60 o T8 o9 T

73,60 T3, Ts38 T3y T30

Ty,60  Tas  Ta8  Ta90 Ty 10

v T T T Mg Th10

14. This equation has been proved for two systems of conics inscribed in the same
conic. The result is also true if any of the conics be replaced by straight lines,
provided that we define the power of a straight line and a conic of the system to be
the power of the straight line and the chord of contact of the conic and the conic S ;
the power of two straight lines being defined as the perpendicular distance from the
pole of one line with respect to S to the other line. Thus let any conic of the system
be

u=a*S—( fe+gy+hz)*=0,
MDCCCLXXXVI. 3 R
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and any straight line
o= lw-my+nz=0;
then the power of the line and conic is {f+mg-+nh, and the power of this straight
line and the line ‘ '
o/ =lx+4m'y+nz=0,

18 W +mm’ +nn'.

Again, we must define the power of S and u to be «, and the power of S and « to
be zero ; the power of S with respect to S to be unity.

15. Exactly as in § 8 we can show that for any two systems of four conics inscribed

1,28, 4\ [ (1,234 5, 6,7, 8\
{H<5, 6,7, %>} = {H<1, 2, 3, 4>} X {H<s, 6.7, s)}

CHAPTER [1I.— SPECIAL Sysrims or CIRCLES.

n S,

Circles Touching three Straight Lanes—S$§ 16, 17.

16. Denoting the four cireles which touch the sides of a triangle by (1, 2, 8, 4), and
the sides of the triangle by «, b, ¢, we have, if' « denote any other circle,

0, a0, ¢ 2\
H<9, 1,2, 3, 4>___0,

e., 0, 1, 1, 1, 1 =0;
0, mo1s Ta9  Tas T
O: Ty, T o, oy, Ty
0, Te 15 Teys Ty ey
Ly wrayy T Tes Ty
and since
Ty T2, T 9= — T, &C.,
we have at once
SR

This theorem will be subsequently extended.
17. Again let x denote the nine-points circle of the triangle, z the inscribed circle,
and let (1, 2, 8) denote the mid-points of the sides; then since

77.1;,1:77-."0,2:77.7:,3:0 ;

mq=(b—0c)"; mo=(c—a); mz=(a—D);
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the equation

gives us
Ta,ws Tayes 0, 0, 0 =0;
Tom oz (b=c)®, (c—a)’, (a—0b)*
. c? »”
0, (b—c), O, e 1
¢ a®
07 (U - (L) 29 4’ 0 ’ 4
. D? a®
O, ((b—b)z, 4“, ‘4’, 0

whence we have
’ Ty 0 s =T,

or the circle which passes through the mid-points of the sides of a triangle touches
the inscribed circle. Similarly it can be proved to touch the escribed circles.

Circle Cutting three Circles Orthogonally.—§§ 18-20.

18. Let the circle cutting the system (1, 2, 8) orthogonally be denoted by (x):
then since

/6,2,1,2,8\
HKG, z 1,2 3>—0

6,1,2,3\ 1,2,3)
7""vl"n(e,1,2,3>’“H(1,2 g (1)

we have

But

> T T T3
> T a9 Mo

s T31  Tg9 Tgs3

and if the equations of the circles be

902+?Jg+29r93+2fr?/+0r=0,
where r=(1, 2, 8);

3R 2
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we have at once

]. e 1
H<Z, 1, z Z)Z 0, 0, 0, 1 % 1, o0, 0, 0
S 1, 29'1’ in, gl Cp . =Y _fl: 1
L, 29’ 2 2f?: Cq Co Yo "‘.fé: 1
1, 2g,, 2.](:%7 C3 | C3  —Y3 _fz‘ia 1
=—16{A(1,2,3)}*; . . . . . . . . . . . . . (15)

where A(1, 2, 8) denotes the area of the triangle formed by the centres of the circles
(1, 2, 3).

Hence by (14) we see that, if » denote the radius of the circle which cuts (1, 2, 3)
orthogonally,

> 97‘2273 o - 1, COSs (01,2, COS wl’s N
iw{A( 2 4{Ad, 2, 5)} COS Wy, —1, COS Wy g
COS w5, COS wyy, —1
or
2p 2
g " 2.13.__, . ) .
= N1 7, 5)j 008 S-Co8 (s—wy 3).c08 (s —wy).co8 (s—w,5); . . (16)

Wy, 5, Wy, @), being the angles of intersection of the circles (1, 2, 3), and 2s being
equal t0 0y g4y 1+,

19. Since any point on a circle may be considered as a circle of infinitely small
radius cutting the circle orthogonally, it follows that if three circles meet in a point,
the radius of their orthogonal circle must vanish. Hence the condition that three
circles meet in a point is

1,2, 3
11(1,9,)):0. o an

2, O

20. The radius of the orthogonal circle of the system (1, 2, 8) is infinite when
A(1, 2, 8)=0, 7.e., when the centres of the circles lie on a straight line; in which case
the orthogonal circle degenerates into the straight line through their centres.

Fouwr cirveles having a Common Orthogonal Circle.—§§ 21-24,

21. Suppose that the system-(1, 2, 3, 4) has a common orthogonal circle, # say ;

then since
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we have
| Tays Tyls Tye 77'%39_ Ty,4 =0 ;
‘ 0, 1,15 T T3 Tl
0, T Toe Tosg Ta4
0, 73,15 T390 73,3 Ty
0, T4, T4,9  T430  Ta4
whence

1,284\ ,‘
n<1>2,3’4)_o,. N 4 1)

which is the condition that the system has a common orthogonal circle.
22. Tt is evident also that (5, 6, 7, 8) being any other system of circles, we must
have, since

1,284
n<567’8>_0.. )

It follows by symmetry that this result must be true if either of the two systems
(1, 2, 8, 4) or (5, 6, 7, 8) have a common orthogonal circle,
Hence we must have
1,2,3,412__/1,2,3,4 5,6,7, 8
{H(\r), 6,7, 8> } “‘H<1, 2,3, 4> X H<5, 6,7, 8>'
23. We may notice that any three circles, whose centres lie on a straight line, may
be considered as having, with the line at infinity, a common orthogonal circle.

24. The system (1, 2, 3, 4) having a common orthogonal circle, and (5, 6, 7, 8)
being any other system of circles, we have

1,2,3,4\
“<5, 6,7, 8)“’ ’

and, as in § 8, we may prove that

1,2,3\1°_ /1,23 (5,6,7
{H<5,6’7>} _H<1,2’3>XH56.7). e 1)

As a particular case, we have

whence
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Hence by (20)

1,2,3\1} 2, 3,4\ 1,43\ 1,2, 4\
e ""{H<1, 2, 3)\JL = 1‘{H<2, 4>} T 2'{H<1, 4, >} ey {H<1, 9, 4>} '

But if » be the radius of the common orthogonal circle, we have by (16),

1, 2, 8 1,2, 4>
e ”£1 23) =“<124 e
32(A(1, 2, )12 832 1A, 2, 4~ ¢

Therefore o

o A1, 2, 8)=m, .A(2, 8, 4)+m, 0. A(1, 4, 3)+m, 0. A(1, 2, 4). . . (21)
Thus if any four circles have a common orthogonal circle, and the areal coordinates
of the centre of one of them referred to the triangle formed by joining the centres of

the other three be a, 8, y : then the powers of any other circle with respect to these
four circles are connected by the relation

e P 2. (22)

As a particular case we obtain the well-known theorem that if A, B, C be the
centres of any three circles, P any point on the circle which cuts these orthogonally,
and O any other point, then

OP*=(0A2 —r)at (OB —1,2)8+ (0C—7)y

where a, B, y are the areal coordinates of P referred to the triangle ABC.

Orthogonal Systems.—§§ 25-29.

25. Four circles may be said to form an orthogonal system if they cut one another
orthogonally: it is clear that the centre of any one of them is the orthocentre of the
triangle formed by the other three.

If the system be denoted by (1, 2, 3, 4), then (x, ) being any other circles, the

equation
2,1,2,3,4\
H<@/, 1,2, 3, 4>_0
becomes
Moy Ty Tag  Tag o =0;
w1 O, 0,
Ty 0, Ty 0,
Ty3 0, 0, Ty, 3,
Ty O, 0, 0, Ty 4
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ne.,
__ T ’"'/ 1 Ta2Tye | TesTys | ToeTy,.
Ty /A + + +_ * (23)
a9 LR T 44
As particular cases, we have, since ) = —21? &ec.,
Taa 4 Ten | Tas g Tay N
+72+ i ey _—-gm,,— —2o0or0; . . . . . (24)
according as « denotes a circle or a straight line.
If x represents a circle, radius 7., we have
. T,
3: -|-”—|—”+‘2‘. Coe e (29)
And if x represent a straight line, so that =, ,=—2, we have
4 '”'@1 +'”'w2 +7T’L% _l_'"'w (26)
Again, since m, ,=0, we have
1,1 1 1

whence it appears that one at least of the three circles must be imaginary, and one at
least real.
26. By equation (16) we have

N 7 Prrs?
TYT T4, 2,9
Hence
4{A(1, 2, 3)YP=rrrr s . . . . . . (28)

and we can easily find that, if p be the radius of the nine-points circle of the triangle
formed by the centres of three of the circles,

(2 ?) (2 ) (1) 20 2) (124 7) (17 +72) (15 70) 256 p Py P =0, (29)

27. If the circles (1, 2, 3, 4) be any system not having a common orthogonal circle,
we may find four other circles, (5, 6, 7, 8) say, each of which is orthogonal to three
of the former. Two such systems are connected by several interesting formule, and
one system may be called the “orthogonal system ” of the other.

Thus, # and y denoting any two circles, we have, since

1,2,3, 4
H( 5678>_O’
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the relation

L ey T Mg Tap ey =03
|

Ty, My O, 0, 0
1 Ty 0, T 0, 0
LTy 0, 0, 75 0
oo 00, 0, s

which may be written
Ty 5 71',, 1 TeeTya ) TerTys  TegTyg .
M,y == = + N :10)
2,6 3,7 Ty,8

whence as particular cases, we have, x denoting any circle whose radius is 7,—

T T g Tag 4 Ta
7L<J+ k) + €, + & 5 (31)
1,5 Ty Tys
R T (32)
W e e e e
1,5 To.6 LEY Ty,8
If 2 denote any straight line, we have
Ta 5 Ty T T
_"LL9+Y~}_’_6_I_ 7‘7+ 1‘8 (33)
Tns  Toae  Ta7  Tas
77107T¢1+7T,@67r12+7r,w7r“+7r@8'n'” —2 (34)
26 T3,y 4,8

and
1 1 1 1
e +~--+~—«——w90_0 Co. . o ... (3B)

T,5  To6  Ts,7 T8

28. This last result gives us an interesting theovrem—in the case when the given
system (1, 2, 3, 4) consists of four points; then u ; is equal to the square of the tangent
from the point (1) to the circle passing through the points (2, 8, 4), and so on; thus
the sum of the reciprocals of the powers of each of four given points with respect to
the circle passing through the remaining three is zero. One of these quantities must
be negative, so that one of the four points must lie within the corresponding circle.

Also by (81) the sum of the powers of these points with respect to any other circle,
divided respectively by their powers with respect to the orthogonal system, is equal to
unity. And by (33) the sum of the quotients of the perpendiculars from each point
on any straight line, divided by the power of that point with respect to the circle
which does not pass through it, is zero.

29. There is another special system of circles which is closely allied to the orthogonal
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system discussed in § 25; which is of some importance.
circles cutting orthogonally, and let (8, 4) be their two points of intersection ; the

497

Thus, let (1, 2) be any two

equation
H(x, 1,2, 3, >=0
y,1,2,3,4
becomes
Moy Tl Tag  Taz Moy =0;
Ty T, 0, 0, 0
Ty 0, om0, 0
Tys 0, 0, 0, 3,4
Ty O 0, Tys O
which may be written, if we put m, ,=¢?,
T Ty 1 ) T2 Ty | Mo My,s+ TagTys '
oy = + s + = T 149
a particular case of which is
Lt 1 ¢
—7?2 7"22_@?

Circles touching one another.—§§ 30-34.

30. Two circles may be said to touch externally, or internally, according as their
angle of intersection =0 or m, 7.e., if we denote the circles by «, v, then they
touch externally if .= (m.m,,)}, and internally if m,,= —(ms,o.my,, )%

If the four circles (1, 2, 8, 4) touch externally, we have at once, from the equation

6,1,2,3,4\
H<e, 1,23, 4)"0 ’

. 1L 11| =0
7 ooy 75 Ty
1
= =1, 1, 1, 1
7y
1
,}T’ 1; —1, 1: 1
1
) 1: 1, ""’1, 1
73
—];7 15 1) 1, "_].
7y

MDCCCLXXXVI,
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Whence
R 72=2<;,,+7~+“:'*+TT+T":+77>; - (37)
™ Ty "7y : 3 4

i“j+ L f<mqrm+ﬂf.. S (39)

31. This formula is given by STEINER ( OrELLE, Journ. Math.,” vol. 1, 1826), in a
paper, in which several interesting cases of series of circles touching one another are
discussed : two cases may be noticed here.

Let two circles (1, 2), radii a, ¢, be described touching each other externally and
touching another circle, radius 7, internally, whose centre lies on the common diameter
of the other two. Now let a circle S| be described touching the two former externally
and the latter internally, and let a series of circles S,, Ss, &ec., be described, all touch-
ing (1, 2) externally, as well as the preceding one in the series. Let their radii be
7, Ty &C. ,

Clearly 7,_;, 7., are the roots of the equation

1 1 1.1 2 2 2-
72 ‘I;;-Fgg‘-l- <-|- -+ >+ - 7i;d+}§;&’

therefore

L _ 2,1 =2<1—|-1> 2

Tn— Tn Tug1 41 c

And we easily find that ‘
L (39)

"t —ac

~

If, however, S'; be drawn touching (1, 2) externally, and also the line joining their
centres, we shall have, if &', be the n'" circle of this second series

e v AP (1)

32. If the system of circles (1, 2, 3, 4) have a common tangent circle «, say, the
equation

may be written

Lo Vg Ve Vs Wy | =050 0L (41)

\/77'],1’ Ty,10 T, 9 1,3 Ty, 4
/

YV Ty, 9 To,1s 79,9 9,3 9,4,

Vv 3,39 3,15 3,9 3,8 T3, 4

V Ty 4 Ty, 15 Y 74,3 Ty, 4
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where the positive sign is to be taken with the radicals for external contact, and the
negative for internal contact. ’
Now if t,, denote the direct common tangent of the circles (7, s) we have

t2r, §= Ty, st \/77'4 rTss 5

and if ., denote the transverse common tangent, then

4

pJ—
4 rys— Ty s~ \/771', 7 Ts, 50

‘We can then deduce at once from (41)

2 2 P —
0, tie®  ly3%s i =0,
9 9 9
1% 0, lo,s" T4
9 g 9
1% U395 0, 2

i 9 bl 9
| t%,l’ by,o"s by, 3% 0
or
b9 U3 + s lyo ok b lo,3=0;

which is Dr. CaseY’s well-known formula,*

33. When the condition in the last article is satisfied, we can find the radius of the
tangent circle by equation (31).

Thus, let the system (5, 6, 7, 8) be the system 01thogona1 to the system (1, 2, 8, 4),

then we have

Ta, 1y Mo LEX.

4y T

Tis  Tas Ty Ty
Thus if () touch each of the circles externally, we have

12, 2, 2n 2,
TETT AT T O . s s . (42
Te T l_w2,6+73,7+7’-4.8 (42)
34. If the system (1, 2, 8, 4) be such that four other circles (5, 6, 7, 8) can be
drawn to touch them all, symmetrically : say each of the latter touches three of the
former externally and one internally : then the equation

becomes

— 8, =25 LS (2”")(2@") ;
2= 9 4

Ty 7 7

[* If the circle () touches the circles (1, 2) in opposite senses, then # , must be replaced by ¢4 in
this formula.—October, 1886.]

382
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whence as a particular case

(bt ot =2 4ot b - - - (43)

Tolg - Ty Ty

Coarrer IV.—CircLes CONNECTED WITH A TRIANGLE.

The properties of several of these circles have been discussed in detail by the author
in a paper published in the ¢ Quarterly Journal of Mathematics’ (vol. 21, 1885). It is
only proposed to discuss here some of the more general cases, which can be deduced at
once from the general equation in § 6, and which by this method admit of immediate
extension. The first case considered, viz., the circles which cut three given circles at
given angles, is discussed by DArBoUX (‘ Annales de I'Ecole Normale,” vol. 1, 1872).
By triangle is meant the general case of a triangle formed by three circles.

Circles cutting Three Given Circles at Given Angles.—§§ 35-38.

35. Let (1, 2, 3) denote any given system of three circles, which cut at angles
a, B,v. If then S be any circle which cuts them at angles 6, ¢, ), we have at once
by § 7—denoting the radius by p—

0 1 1 ﬂl_ 1 =0, . . . . (44)
’ P’ Tl’ 7,2’ 7y

1

- —1, cosl, cosd¢, cosiy

p

1

;:o CCS 0: -1, cosy, COS 18
1

1

.o cos$, cosy, —1, cose
2

1 | ‘

5 Cos ¢, cosfB, cosa, —1
3

Thus we obtain a quadratic for p ; and two circles can in general be drawn cutting

the given circles at the given angles.
Now let either of these circles cut the orthogonal circle of the system (1, 2, ‘%) at
the angle w—denoting the orthogonal circle by the symbol 4, and its radius by 7 ; the

equation
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becomes
—1, cosw, cost, cos¢, cosy | =0;
cos w, —1, 0, 0, 0
cos b, O, —1, cosvy, cospf
cos ¢, O, cosy, =—1, cosa
cosy, O, cos B, cosa, —1
or
sinffw | —1, cosvy, cosf = 0, cos 0, cos¢p, cosy (45)
cosy, =—1, cosa cos, —1, cosy, cosf
cos B, cosa, —1 cos ¢, cosy, —1, cosa
cosy, cosB, cosa, —1

It thus appears that each of the circles, which can be drawn to cut the system
(1, 2, 8) at angles 0, ¢, ¥, cuts the orthogonal circle at one of the angles w or 7—o.
It is otherwise evident that these two circles are such that one is the inverse of the
other with respect to the circle which cuts the system (1, 2, 8) orthogonally.

Let us denote the two circles by S, &', and their radii by p, p’. We have by
g 4155~
the equation
L 11 L 1 =0 (46)
L
cosw, —1, O, 0, 0
cosf, O, —1, cosy, cosp
cos ¢, O, cosy, —1, cose
cosy, O, cos B, cosa, —1

and we also get a similar equation for p'. _

It appears, then, that the circle S, which is the inverse of 8, cuts the orthogonal
circle at the angle m—w. It may happen, however, that the roots of equation (44)
are of opposite sign ; in this case, the circle S’ evidently cuts the given sysiem (1, 2, 3)
at angles w—0, m—¢, m—1, and the circle orthogonal to these at the angle w.

p and p’ being the roots of (44), we have at once by (46)

— == e e e e e e
P P"+ 7 o (47)
i.e.,
1.+ 12
S, 4 Ws',q— i *—77'4‘,4
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2

o .
18

. . o . o . COS
Hence the two circles S, 8" are real, coincident, or imaginary, according as —
,

positive, zero, or negative.

But by § 18 the sign of +? is the same as the sign of

1,2,3
H(l 0 9> or cos®a -+ cos® B+ cos®y + 2 cos a cos B cos y—1.
3 ’d

Hence, by (45), S, S are real, coincident, or imaginary, according as

—1, cosf, cos¢, cosiy l
1
cos @, —1, cosy, cosfB |
|
cos ¢, cosy, =—1, cosa ‘
|

cosyfi, cosfB, cosa, —I1

is negative, zero, or positive, t.e., according as

§1,2 3
H(S, 12, 3>

is negative, zero, or positive.

36. 1t is clear that four pairs of circles can be drawn to cut the given system
(1, 2, 3) at angles equal to 0, ¢, y, or their supplements. The radii of these eight
circles are connected by a remarkable relation. Let them be denoted by p, p’; p1, p'1;
P P'as P P By equation (46) we have '

1,1 1 L 1 =0,
p o’ 7y 73
cos§, —1, cosy, cosf
cos ¢, cosy, —1, cosa
cosy, cosf3, cosea, —I1
or
1 1 .
;-I-?-“—‘F cos 0+Geosp+Heosp; . . . . . . (48)

similarly, we shall have,

—1—_{_—1,—-: —F cos 4G cos ¢+ H cos s,

P P
_1_+~1,—_—_ F cos —G cos ¢p+H cos i,
P2 P

14_|__1, = F cos 0+G cos ¢—H cos 4.
P Ps

Hence

1.1 1 11 1.1 1

- = - - - - e . o . . . o . 49)
P+P’ P1+P1+P2+P2+P3+P3 (
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87. We also obtain some interesting results by considering another group of circles
allied to the pair considered in § 35. Thus let 2s=04-¢+y; let p;, p/; be the radii
of the pair of circles cutting the system (1, 2, 3) at angles 2s, ¥, ¢; let p,, p, be the
radii of the pair cutting the system at angles i, 2s, 0; and p,, p’5 the radii of the
pair cutting the system at angles ¢, 6, 2s.

As in (48), we have

% +i—,=F cos 8 4G cos ¢ +H cos i,
i-+£;~=F cos 254G cos Y +H cos ¢,
1 1

l+-1;=F cos  +G cos 2s+H cos 6,
P2 P2

1—+ 1, =F cos ¢ +G cos 0 +H cos 2s.
Ps  Ps

Hence, by addition,

1 1 1 1 1 1 1 1
; P/+P1+P’1+P2+I;}§+I;;+;’;
=(F+G+4H)(cos 0+ cos ¢+ cos Y+ cos 2s)
=<-1E+}-,>4 cos 5(@+).cos H(P40).cos (64+¢); . . . . (59)

where R, R’ are the radii of the circles which touch the given circles externally.
Similarly

=(F—G—H)(cos 0+ cos 2s— cos p— cos )

= (77 4 cos g-Hu)sin 4+ 0)sin 4(6+9);

1
where R;, R’; are the radii of the circles which touch the circle (1) internally and the
circles (2, 3) externally.

88. The problem of drawing a circle to cut four given circles at equal angles has
been discussed by DARBOUX, in his paper cited above, who makes the solution depend
on that of drawing a circle to cut three given circles at given angles. Given four
circles, say (1, 2, 3, 4), we can easily find the angle at which a circle can cut them,
and the radius of the circle. For let this angle be ¢, then, if we denote the circle by
S, we have

-~

81,2454\
H(S, 1,23, 4)‘0’
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whence
—1, cos ¢, cos ¢, cos ¢, cos ¢ =0;
cos ¢, —1, COS W9, COS @3,  COS Wy,
cos ¢, coswy,, —I1, COS @y 3,  COS Wy
cos ¢, coswg,, COSwy, —I1, COS W 4
COS ¢, COS @, COS®, COSw,3 —I

where w, 4, o5, &c., are the angles of intersection of the system (1, 2, 3, 4).
We have then to determine ¢, the equation

—sec’p, 1, 1, 1, 1, =0. . . (51)
1, —1, COS w4, COS @3 COS O,

1, cos @y, —1, COS Wy 5, COS Wy 4

1, COS w3, COS W3, —1, COS Wy 4

1, COS Wy 1, COS @9, COS@y3 —1

Also since

we obtain at once, if p be the radius of the circle,

secp L 1 1 1 =0. . . (52)
p’ vy’ 7y vy 74

1, -1, COS Wy, COS @3 COS @,

1, cos wy 1, —1, COS Wy 3, COS Wy 4

1, COS wg 1, COS g4 —1, COS wg 4,

1, COS @y 1, COS W9, COSw®y; —I1

We thus see that only one circle can be drawn ; (51) determines the angle at which
this circle cuts the given system.
For instance, if' the four given circles cut orthogonally, we have

This circle will be imaginary, since one of the four (1, 2, 3, 4) is so.
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The Circles which pass through three of the points of intersection of three Circles.

§§ 89-41.

39. Let the given systems of circles be denoted by (1, 2, 8), and their orthogonal
circle by the symbol (4). Let P, Q, R, P’, Q', R’ be the six points of intersection of
the three circles, the points P, Q, R being situated within the triangle formed by the
centres of the circles. Let S be the circle which passes through the points P, Q, R.

‘We have, then,
S, 2,3\ 78,81\ (8,1,2 _
H<S, 2, 3>fn<s, 3, 1>_H S, 1, 2)‘0'
Hence we have by a theorem of determinants

12 /8,38 81,2, 3\
[ “"‘“(S, 3>XH(\s, 12 3>

”1
and l} .
J

S, 2, 3\ ]2 2, 3 S, 1,2, 3
{H<1, 2, 3> } =-—n(, 3>><H<s, 1,2 >

But since

we have

or
(81,23 1,23 S 2,3 S, 3,1 1,2
Mg, 1, 2, 3>“”S L{H<1, 2, 3)"“(1, 2, 3>_H(1, 2, 3) H<1, 2, o)}
and since
S,1,2,3, 4\

H(s, 1,23, 4)‘0’

$,1,2 3 1,23

b ) ) — 2 b bl

’THH<S, 1,2, 3>”” S’4H<1, 92,3

)

But by §18,
1,2,3 . 2
n(l’ ) 3>=—1bn—4,*.{ A(1, 2, 3)}

hence by means of (53), (54) becomes

e o= (ol 3]+ o))+

n(i i>_16{A(P 2, 3)1%

MDCCCLXXXVI, 37T

But

(53)

(54)

(55)



506 MR. R. LACHLAN ON SYSTEMS OF CIRCLES AND SPHERES.

Thus we may write this equation

m—mes AP, 2, 3)+AQ, 3, DFAR, 1, 2)
s A1, 2,3) ’

or
peose ,‘ A, 2, 3) | .
7 —-A<1, 2, 3)+A(P} 2, 3>+A(Q, 3, 1)+A(R, 1, 2), . e ( )

where o is the angle of intersection of S and the orthogonal circle of the system
(1, 2, 3), and p, r are the radii of the circles (S, 4).

This formula is easily adapted for the circles (PQR’), &c., by taking the area of the
triangle (P, 2, 8) as of opposite sign to A(P, 2, 3).

Again, if kg g, kg 1, &e. denote the minors of oy, g, &e. in H(:: i: zz g) ; and if py g,

‘)‘)
it

. N,
p1,9 &e. denote the minors of m ,, m o, &c. in H( L9 i), we shall have from (55)
' \L, &5 9

= Ts,5:-Ks, 85 Ks, 10 Ks,o Ks g
Ki,89 FrLe o ML Mg

K, 85 Mo, 15 Mo,90  Paos

i Kg, s M3, 15 Mg, Mo

But by (53)
S, 2,3\12 2, 3 S, 1,23 S,1,2,3
o y 2, — y : , 4, 4, —_— y Ly Sy
"S’l_{n<1, 2, o>} - H<2 3>‘H<S, 1,2, 3> ”"TH(S, 12, 3>'

Therefore

’2>}2: 0, \,/ﬂl,l, \//1;,; \/ITSS l (57)
‘/:“'11> K115 1,25 Mg |

2

2 1
TS, 8Ty, 4T 4.SX {H( )
T 48 \

\/ Mg, 95 g, 1 Mg, 2 Ma,3
\/ 3,35 3,15 3,2 - M3

But

2
TS, 8T 4,0~ T 4,8 __ 9 .
e = tan” o

4,8

and
pma=16{A(P, 2, 8)}%
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So that we may write the above equation

64 r*tan® w{A(1,2,3)}'=] 0, AP, 2,38), AQ,38,1), A(R,1,2) |. (58)
.A(P: 2, 3)’ 1,15 1,9 K3
AR, 3, 1), pous Mg, 0 g3
AR, 1,2),  pg s, Fs,3

Similarly we can find o for the circles (P, Q, R), &e.
40. If the given system (1, 2, 3) intersect at angles «, f, y, equation (57) reduces
easily to

cos® w=sec §. cos (s—a).cos (s—B).cos (s—y), . . . . (59)
where

2s=a-+B+7y.

Also for circle (PQR) we shall find

cos® w=cos s.sec (s—a). cos (s—B) . cos (s—y).

41. Tt may be noticed that the system (P, Q, R, 4) is the orthogonal system to
(1, 2, 3, S)—(see § 27).

We have at once from equation (35)

1 1 1 1
;};-I—;ﬂ t—t—=0. . . . . . . .. (60)

T,
Q2 Trs S,4

If S’ be the circle through (P’, Q', R’), we have

Hence we have

7_]__1:+~1*+_ﬁ+_w+—~+ L +_§_:0; Co . (61)

Tpn1 - Tqe Tr,3 Tr,3 T

or the sum of the reciprocals of the squares of the tangents, from the points of inter-
section of three circles to the circles, is equal to the reciprocal of the square of the
radius of the circle which cuts the circles orthogonally.

3T 2
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Again, from equation (31), we shall have

7751+7T%2_|_7"ss+""§q o (62)

Tp1 Tqe Tra Tsa
or, if S cut the system (1, 2, 3) at angles ¢,, ¢,, ¢;, this may be written

1_ 2r cos ¢1+‘>7 o8 ¢2+Algcos b 1 o (68)

P T Tq,2 TR, 3 7008 @

This with equation (60) is sufficient to determine » and p. Also by drawing a
figure we shall see at once that

ot by ta=ds+d +L=¢ +Pyty=m.
So that, if 2s=a+B+7y,
b=pr—(s—a); q=tr—(s—B); d=3m—(s—y).

The Circles which touch three given Circles.—§§ 42-46.

42. Let (1, 2, 8) be the given system, and let (4) denote the orthogonal circle of
the system : then if S be the circle which touches all the circles externally, and o its
angle of intersection with (4), we shall have, since,

D - .
T8, 1=—11,1-78,8 5 &C.,

and
S,1,2,3 1, 2,3
e H(S, 1,9, 3)“’7 4’S'H<1, 9, 3> ’
(cos® m—l).HG’ z’ :Z’)):l 0, Ve Ve Vg oo (64)
Y \/771,1’ 71,15 71,9 1,3
’ Vv 9,9 Ty, 15 Mo, 9 9,3 5
| \/ 73,35 73,15 3,95 73,3

By giving the expressions Vv ;—T; &e., different signs, we obtain the values of cos w
for the other pairs of tangent circles; and it is clear that there are four pairs of such
circles.

43. If &, B, y be the angles of intersection of the system (1, 2, 3), and o, ), ,, w,
the angles of intersection of the four pairs of tangent circles with the orthogonal circle
of the system, we can easily deduce from (64) the formulee
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K cos® o =2(L+4 cos a)(1+4 cos B
K cos? o, =2(14 cos a)(1— cos B
X
X

~

1+ cos'y)w
1— cosy) |
) [
)

~—

1+ cos B

K cos? wg=2(1— cos &)(1— cos 8

K cos® w,=2(1— cos a

~

l—-cosy) |

(
(
(
(

~

14 cosy J
where
K= cos® @ 4 cos? B+ cos® y + 2 cos & cos B cos y—1.
44. The radii of the circles are given at once by the formula
§,1,2,8,4\
H<9, 1, 2, 3, 4:>—0'

Thus, if p be the radius of circle touching the system (1, 2, 3) externally, we have

LI 1=,

P’ o 7y 7y 7

1, —1, cosy, cosp, 0

1, cosy, —1, cos a, 0

1, cos B, cosa, —I1, 0

cosw, O, 0, 0, —1

or,

%+@§;’, 711 %2 713 =0. . . . . . (66)
1, —1, cosy, cosf
1,  cosy, —1, cosa
1, cos 8, cosa,  —1

If we denote the radii of the pairs of tangent circles by (p, p’) (p1, p') (P2 p's)
(pss p's), we have, by (49) '
=
PP P P1 P2 P2 P3P
a theorem first given by Mr. Cox.—(‘ Quart. Journ, Math.,” vol. 19, 1883, p. 99.)

45. Let (5, 6, 7, 8) denote a system of circles formed by taking one of each pair of
tangent circles of the system (1, 2, 3). This can be done in sixteen ways :—We may
show that eight of these sixteen groups are touched respectively by eight other
circles.

Let z be the circle which touches the group (5, 6, 7, 8): let z touch 5 internally and

(6, 7, 8) externally ; then, since
a(*4 128\,
z,5,6,7,8/
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we have, giving « the successive values 4, 1, 2, 3 :—

Alcosw, = 4
A cosw.,= A,—A cosy—A, cos

1 i1 2 Y 4 B (66%)
A, cos w, o= —A, cos y+Ay—A, cos

A, cos w, g=—A,cos B—AgcosatA,

e

where

A= COS wy ;— COS Wy 3= COS W, y— COS W g

1
Ay= — €08 0, ;- COS W, ;= COS Wy, ;= COS W, g L
Ag=— C0S w,, ;— COS W, ;+ COS Wy ;= COS W, g !

A= — c0S wy, ;— COS wy, 3= COS Wy, 7 COS Wy g

But we also have

Therefore
— A +A, cos oy .+ Ag cos @y A cos 0y .+4 cos v, ,=0.

Hence we must have

16—AP+AL+HALHAL—2AA, cos a—2A,A, cos B—2A,A; cos y=0,
which may be written

1642 cos® w,, 5 (1 — cos a— cos B— cos y)
+2 cos? @, ¢(1— cos - cos B+ cos y)
12 cos® wy, (14 cos a— cos B+ cos y)
+2 cos® @, 5(1+ cos a+ cos B— cos y)
+2(1— cos &) cos @, 5. COS @y, ;—2(1-4 Cos @) CoS @, ;. COS w,
+2(1— cos B) cos w,, ;. €08 @, y—2(14 cos B) cos w, ¢ oS w, g

~+2(1— cos y) oS wy, ;5. o8 wyz—2(1 4 cos y) cos w, . cos w, ,=0.
Referring to (65) we see that this equation is satisfied, provided we choose the
groups of circles so that
COS @y, 5. COS Wy g. COS Wy COS 4 g 18 Positive.
Thus if we denote the tangent circles of the system (1, 2, 3) by the symbols

(7, ), (1, 1), (795 73), (73, 7'5), Wheve 7, 7, 75, 75 correspond to the positive values
of cos , cos wy, &c., as given by (65), then we see that the groups
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” ) 4 ’ ’ ’
T, T, To Tg T, Ty To Ty
’ Y / 4
T, Ty, T Ty T, Ty, Ty T3
’ /7 ’ 7
Ty, Ty Ty T3 T, T, Tg T3
X /i ’ ’ ’
T, Ty To Ty T, T, Ty T3y

are touched by circles 8, S;, S,, S;; 8/, 8’|, ¥, 8’5, Also each of these circles, S say,
touches 7 internally and the others externally ; and if S touch the group =, 7, 7, 75,
and 8§’ the group 7, 7}, 75, 75 then & is the inverse of S with respect to the
orthogonal circle of the system (1, 2, 3). These circles are usually called Dr. HarT'S
circles. _

46. We can easily deduce from formulse (66) that

S, S cut (1, 2, 8) at angles B—1v, y—a, a—8 ji

S, S8, (1,2, 38) » B—y, v+a, a4+ L (67)
Sp 8w (1L,2,3) L, Bryy—wmetp [T T

8p 8% » (L2,3) . Bty ytea—p |

Also, if the angles of intersection with the orthogonal circle of (1, 2, 3) of the pairs
(3, ¥, &c., be =, =, w,, w3, we shall have

cos® w =4 sec s . cos (s—a) . cos (s—f3) . cos (s——'y)w

|
L

cos? wy=4 cos s . cos (s—a) . sec (s—fB) . cos (s—y) |

cos® @ =4 cos s . sec (s—a) . cos (s—B) . cos (s—y)
cos® wy=4 cos s . cos (s—a) . cos (s—p) . sec (S_Y)J

Referring to §40 we see that if the given circles (1, 2, 3) intersect in the points
P,Q, R, P, Q, R, and the circle (P, Q, R) cut the orthogonal circle to (1, 2, 3) at
the angle w, then

cos w=2 COS w.

Hence, if p, ' be the radil of the circles S, S/, and R, R/ the radii of the circles
(P, Q R), (P, Q, R), then
1 1 1 1

Similarly each pair of Dr. HART's circles is connected with a corresponding pair of
the circles which can be drawn through the points P, Q, R, ¥/, Q, R’ by a formula
which is analogous to that which connects the radius of the nine-points circle of a

plane triangle with the radius of the circum-circle.
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Three circles produce, as may be seen by drawing a figure, four pairs of triangles,
each pair consisting of a triangle, and its inverse with respect to the orthogonal circle.
Thus, supposing «, B, y are the angles of the triangle P, Q, R, the angles of the
triangle P’, Q’, R” are either a, B, v or else w—a, 7—fB, m—7y. Again, the angles of
P, Q, R are a, 7—B, m—v. Hence, having obtained the formule for the radius of
any circle connected with a particular triangle, we can easily obtain the formulee for
the other circles. It is also evident that there must be eight circles corresponding to
the circum-circle, and eight circles corresponding to the nine-points circle of a plane
triangle.

CaAPTER V.—POoWER-COORDINATES.

Definition.-~§§ 47-50.

47. We have already seen that any circle (straight line or point) is completely
determined when its powers are known with respect to any four circles which have
not a common orthogonal circle. Hence, given four such circles, which may be called
the system of reference, any multiples, the same or different, of the powers of a circle
(straight line or point) with respect to them, may be defined as its power-coordinates.

We shall find it convenient to denote the coordinates of any circle by énlw ; the
coordinates of any point by ayzw ; and the coordinates of any straight line by Auvp.

If a, B be the Cartesian coordinates of the centre of any circle whose power-
coordinate with respect to a circle be &; if a, b be the Cartesian coordinates of the
centre of the latter ; and R, » be the radii of the two circles : we shall have

o (a—a)’ 4 (B—bP—R*—1?;

so that the power-coordinates of any circle are quadric functions of a particular form
of the Cartesian coordinates of the centre of the circle.
Similarly, if @ be the power-coordinate of a point whose Cartesian coordinates are

a, B3:
x o (o—a)*+(B—b)*—1?;

or the power-coordinates of a point are quadric functions of a particular form of the
Cartesian coordinates of the point.
In the case of a straight line, whose Cartesian equation is

% CoS o1 sin a=p,
we shall have
N & p—a cos a—Db sin e,

Thus the power-coordinates of a straight line are linear functions of a particular
form of what may be called the Cartesian coordinates of the straight line.
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48. If @ denote as previously the line at infinity, and the system of reference be
denoted by (1, 2, 3, 4), then P being any point; since mp,=1, mp =0, we see that
the coordinates of P must satisfy :—

i. a homogeneous quadric relation,

P,1,2, 3,4\
HG@&&J‘

ii. a non-homogeneous linear relation,

P 1,234
HQEJ&A}”'

Let us suppose that xzyzw, the coordinates of P, are given by
90::701.771;,1; y=]c2.1'rl>,2; Z=763.7Tp,3; ’w=k4«771’,4«§
then xyzw must satisfy the relation, which is called the absolute :—

Yo gmwz= o 2y w o =0, . . . . . (69)

ks,

T The  Tys T

/;2’ To, 1 T  Tos Ty

7?’ T3,15 73,9 T3, T3y
3

w

2o el T Tas T
4

Then the relation (ii) may be written

1Y
lax+k28J+k +k4a;0 K>j!
* Lo (70)
\P‘+y : -l— a"’-l—w JI
where K is some constant.®

49. Similarly if S denote any circle, since mg,=1, we see that its coordinates
(&, m, &, w) must satisfy the linear relation

S,1,2,3,4
H@L%&Q 0,

or

3\P_
g8]0 870‘,+£87c k;--K' N ()

* [If we write ¥ (@, ¥, 2, w) = (a1 1 Oa -0 (@Y, 2, w)? then we shall have,
2al 1- k2 )
( ) 4) - (Z 5 4) =&c.—October, 1886.]
3, 2,3, 4

MDCCCLXXXVI, U
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50. Again if L denote any straight line, since my,,=0, and = —2;

its coordinates (), u, v, p) must satisfy, (i) the homogeneous linear relation,

or

8«]» B«p

B TP

and (ii) the non-homogenecous quadric relation,

L1, 2 5 4
H<h]‘z()4) 9

or
1!’()\7 M Y, P)z"“

The Crele.—~$§ 51-55.

51. Let P be any point on a circle 8, then g »==0; hence the equation

1,2, 54\
I%&LZﬂﬂﬁ_m
leads to
o oyt et Y=o,

Thus the equation of a circle is of the first degree.
It follows that the general equation of the first degree

ax— by +cz+dw=0
represents in general a circle, whose coordinates are given by,

Ny O

0F _On_0¢ _do _ K
« b e d a/i’1+bk2+c7c3+d/s,;

by equation (71).

we see that

(72)

(73)

(74)

(75)

52. Given any two circles whose coordinates are (& 7, {, »), (€, v/, {, &) ; their

power 7 is given by
afS L2
$,1,2,3,4) 7
or

K gaw ‘+€ﬁ¢ &p}

\V

(76)
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In particular the radius of the circle énlw is given by

-0 0 0 0
—21% K= f.\g‘-l-n%-l- gé?"" waf,

or

- 72K=¢(§:’ B C; (u).

53. Hence the radius of the circle

is given by
15
o, 15

Ay 15

a,
where

M= -1—% ety Dyt ches +- k),

and «, ;, @) 4, &c., are the coefficients in the equation to the absolute, so that

Yleypw)=ay, &4y o '+ .o 420, xy+ ... =0.

54. Again the power of the circle (éplw) with respect to the circle

is clearly given by

55. And again the power of the two circles

_ ak+bntef+do

ax—+ by~ cz+dw=0,

Ay, 45

Oy 4

s, 4

a{iv, 40

d,

ax~+ by cz4dw=0,

= Iy + bley + cloy -+ die,

a

S

d
M2

ax +by +cz +dw =0,
adx+by+cz+dw=0,

is given by

a’l, 1>
9,15
as, 1
g1

’

o,

where
9

M= (ak,+0k;+cky+ dk) (@b 4 bk 4 kg4 d'Ey).
3 U2

9
g, 95
(.o,

Uy, 9

v,

y,3

g, 3,
ds, 3
C(q,, 3

’

C,

a4

o
b
c
d
M=

515

(77)

(78)

(79)

(80)



516 MR. R. LACHLAN ON SYSTEMS OF CIRCLES AND SPHERES.

Whence, if the two circles cut at an angle ¢, we have

0w ,8\If B\If , 0
oty ot N
2/ W (a, b, ¢, d). V(' ¥, ¢, cl’) o (81)

COS p=—

where
(o, by e, d)=— | ayq, dre Oy g O
01’2,17 652,2’ 662,32 “2,47 b

a1y (g9 O3 gy C

A1 Uy gz gy d

Uy

a, b, ¢, d, 0

The straight Line~§§ 56-58.

56. Proceeding as in § 51, we see that the equation to the straight line, whose
coordinates are (N, u, v, p), 18

”"’ +a"’ +a"’4+8"’w—— N )

But by equation (72)

0 0
o gt bt Y k=

hence the equation

ax—~4by+cz4dw=0,
will represent a straight line, provided that
ak,+bky+chy+dk,=0; . . . . . . . . (83)

and if this condition be satisfied the coordinates of the lines are given by,

N N N Y
ON__Ou__ov__Op__ —K.A |
R =Py N TF=5 - - - . (88)
where
A= |y, Oy Oyg Oy ]’

Ug15 (g9 (g3 oy 1
]
U315 O30 (g3 U4

|

g, 15 Qoo Qg gy

and ¥ denotes the same expression as in § 55.
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57. The power of the straight line
ax+by4cz4dw=0,
and the circle (& 9, {, »)is given by,

K=l gl b ogt

=2 A/ KA gyl do). L (8)

And the loci represented by the equations

ax-+by~4cz+dw=0,
&'z4+by~+c'z4+dw=0,

intersect at the angle ¢, given by

/a‘I, / /a\y /a\If /a_\_lf_
Vo TV 0
V(e by, )V (Ve d)

(86)

oS p=—

58. The coordinates of the line at infinity are ki, k,, ks, £, ; hence the equation to

the line at infinity is

\lv+ +4 ‘I’-I-wa\[_-o

The Point.-—§§ 59-61.

59. The power of the point (zyzw) with respect to the circle
ax~+by+cz+dw=0,

is
ax -+ by + ¢z + dw
ey + by - cky + dk,

But if the equation represents a straight line, then we see that the perpendicular

on it from the point

— , —A
= (ax+by+cz+ dw) ’\/ﬁ B €14
60. The power of the two points (xyzw), (x'y7w’) is given by equation (76)

wK—wa¢+y ‘Iﬁ—l—z +wa "
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Hence, if
Ylayzw) = a2+ 2a, ay+ ...

the distance 8 between the points is given by,
— P K=a, (x—a)+2a (r—a)y—y)+ ...
=y{a—a/, y—y, z2—2, w—w't. . . . . . . . (88)
Thus, if 8s be a small element of are, we shall have

—K.(8s)*=1{bx, 8y, 8z, Sw}.. . . . . . . . (89)

61. If P, Q, R be any three points, then by equation (15) we have for the area of
the triangle

° /0P, QR
—16{AP, Q R)} =1y % 1)

6,P,Q R 1,2,3,4\__ [ (6, D, Q I\|?
H(e, P, Q, R.>XH<1, 2, 3, 4>“{H<1, 2, 3, 4>} :

Hence if (zy,200,), (205210,), (@5ys25w5) be the coordinates of the points P, Q, R
referred to any system of circles (1, 2, 3, 4) we shall have

and by § 8

AP QRy=p | P T e B (90)
Yo Ye Vs ky

Bl %y Zg kg

wy, e, s, k|
where,

- 1,2,8 4\
-—-4M217121c297c32/c,,?.H< . *),__: L

Ly Ay O, 4

Coordinate Systems of Reference.—8§ 62-66.

62. There are two systems of circles which are convenient as systems of reference—
(i.) a system consisting of four circles cutting one another orthogonally,® (ii.) a system
of two circles cutting orthogonally, and their two points of intersection. The former
has been called the ¢ orthogonal ” system, and was first used by DArBoUXx, ¢ Sur une
Classe remarquable de Courbes et de Surfaces algébriques’ (Note X., 1873). The
latter system might be called the ¢ semi-orthogonal” system ; it is mentioned by
Mr. HomersmaM Cox in the paper “ On Systems of Circles and Bicircular Quartics ”
(‘ Quart. Journ. Math.,” vol. 19, 1883, p. 116).

# [CasEY uses five orthogonal spheres-—¢ Cyelides ” (1871), p. 600. But the first use of four mutually

orthotomic cireles was, I believe, by Crirrorp in a series of questions proposed by him in the ¢ Educa-
tional Times’ for 1865-6. See Reprint, vol. 6.—October, 1886. ]
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63. In the case of the orthogonal system it is most convenient to take the constants
ky, ky, ks, ky equal to the reciprocals of the four radii, so that the equation to the
absolute is :
Y, ¥, 2, w)=a+ 1+ 224+ u*=0
and K=—4 N 1)

W(a, b, ¢, d)=a*+- 0>+ A+ d?

64. In the case of the semi-orthogonal system (see § 29), if' #, 7, be the radii of
the circles, e the distance between their points of intersection, it is convenient to take

1 1 1
k1=;{’ kﬂz;’;’ ky=k,="

4
We shall have
Y(x, y, 2, w) =P+ y*—4dzw
K=—4 e e (92)
(e, b, ¢, d)y=a+b"—cd

65. Thus the angle ¢ at which the loci

ax +by +cz +dw =0,
dae+by+cz4dw=0,
intersect, is given by
i o aa + 00" +cc’ + dd’ -
008 b= = TPt P L PN LV P Y

or
aa’ + 0 —§(ed’ +¢'d) .
(@ + P —ed) (a0 —cd)’

cos p=

according as the system of reference is the “ orthogonal” or the ¢ semi-orthogonal”
system.

66. Occasionally it may not be convenient to take for system of reference either of
the systems just considered. In some cases, however, the equations may be simplified
by referring the coordinates of a point to one system of circles, and the coordinates of
any line or circle to the system cutting the former system orthogonally. Thus, if the
system of reference be (1, 2, 3, 4), and (5, 6, 7, 8) denote the system orthogonal to
this, then taking k,, &y, ks, £, equal to unity, the equatioh of the circle (or line), whose
coordinates referred to (5, 6, 7, 8) are &, %, {, v, referred to the system (1, 2, 3, 4) is

zE oy e

Tys  Toe T3y Tag
The equation

ax by - ez dw=0
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will represent a circle whose coordinates are

g wmy 5

itbresa TEYCS

unless a4 0-4c+4d=0, in which case the equation represents a straight line.

Inwversion.—§ 67, 68.

67. Let xyzw be the power-coordinates of any point P with respect to the system
of circles (1, 2, 8, 4); let P’ be the inverse of P with respect to any point O; then

since by § 8, ——2"— is unaltered by inversion, it follows that, if XYZW be the co-
> R 70,170, P y

ordinates of P’ referred to the system which is the inverse of (1,2, 3, 4), we must
have

w=aX, y=PBY, z=vyZ4, w=38W,

where «, 8, v, d are some constants.

Thus if the equation in power-coordinates of any curve be f(zyzw)=0, the equation
to the inverse curve will be f(aX, BY, vZ, W)=

68. The system consisting of two 1ectangu1ar axes, the point of mtersectlon and
the line at infinity, is clearly the inverse of a system of two orthogonal circles, and
their two points of intersection, the centre of inversion being one of these points,

For instance, the equation of a parabola expressed in power-coordinates is clearly

X?=2aYZ.
Hence the equation to the inverse of a parabola is of the torm
x¥=2ayz,
x, y having reference to the orthogonal circles, #, w to their two points of inter-

section.
Similarly the equation to the inverse of a central conic must be of the form

By =y,

a, B having the same or different signs according as the conic is an ellipse or

hyperbola.
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CHAPTER VI.-—GENERAL EQUATION OF THE SECOND DEGREE IN POWER-
COORDINATES.

Nature of the Curve.—§§ 69, 70.

69. The most general equation of the second degree in power-coordinates may be
written

bz, y, 2, w)= aa® +by*+ 2+ dw- 2fyz 4 292+ 2hay + 2lww 4 2myw - 2nzw=0,  (93)

(zyzw) being the coordinates of a point on the curve, referred to some system of
circles, and therefore satisfying the equation of the absolute y, which is also of
the second degree. Consequently the form (93) contains only eight arbitrary
constants.

Now ayzw may be expressed as linear functions of X*4+Y? X, VY, 1; (X,Y) being
the Cartesian coordinates of the point; and substituting, it is easily seen that (93) may
be expressed in the form

(X Y2 Uy (X2 V)4 Uy=0, . . . . . . . (94)

U,, U, being of the first and second degree ; this equation contains eight constants,
and since (94) represents a curve having nodes at each of the circular points at infinity,
it appears that (93) is a form to which every bicircular quartic can be reduced.

70. It is otherwise evident that, since the equation of a straight line is of the
first degree, every straight line cuts ¢ in four points, unless ¢ is satisfied by the
coordinates of the line at infinity ; for these coordinates satisfy the equation of every
straight line, and therefore in this case ¢ must represent a circular cubic and the line
at infinity.

Lquation to Tangent at any Point.—§§ 71, 72,

71. Let (énlw) be the coordinates of any circle touching the curve ¢ at the point
(x'yzw’). We must have, by equation (74)

a"’ '+aa‘n” an "’z’+%%w'==o,

and since this passes through the point (a'48x', 48y, 2’4687, w'+&w’) we must
have

o ,_,‘k )
858 + Sy +8§82+ dw'=0;

MDCCCLXXXVI. 3 X
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also
2 oo oy s su=,
b 5 oy b 08 b=
Hence we must have
CAA s oy G
af — on . 8@' . Ow

(99)

04’ L0 0 Ly 06 ‘!’
_I]ax oy’ +7»8J 8/+]V84 8w+ ow’
and every circle whose coordinates satisfy these equations must touch the curve ¢=0,
at the point (z'y’z'w’).
72. Let (Auvp) be the coordinates of the tangent at the point (x'y'zw’), then we
must have
&y i Wl o
on _ O _; Ov — ap
% 00 06,08 00y 06,

o by e ow “aw

(96)

but, by § 56, we must have

5
by ax Yotk a\bT"’3 ah"k =0,

where (ky, &y, ks, k,) are the coordinates of the line at infinity; hence, if % be
determined by the equation

<la,+lc28,+7c38,+k$al >(¢+k¢) 0;. . .. .. (97)

then the coordinates of the tangent to the curve are given by (96), and the equation
to it is

<90 ai;,-i-?/ aij‘;-l- s tw >(¢+75¢)

or
dgb 0 o o ‘1’ o, 0P
< e ks évg/"l_k3 +k4 >< o/ ot ) +z o Fw aw>

z</claﬁ?+7,a"f+/0%"f+7ﬁ"’,>< “ a:f+ % 4’) . (98)
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Bitangent Circles.—8§§ 73-75.
73. A circle

< st oy +Aay,+w >(qS+kt[1) 0,
will clearly touch the curve ¢ at the point «”, y”, 2", w” if

w o __ o oy _oF o7 _ow o,

% «p 0, 0% 0p_ 0 Op \P
a + ax// ayu+ 8// az//+ a// aw//+7aw//

0 2 000 0 00 D0y

v.e., if k satisfy the equation
H(¢+kp)=0, . . . . . . . . . . (99

where H(u) denotes the Hessian of .

Since this equation is of the fourth degree in k, we infer that there are in general
four systems of bitangent circles, each circle belonging to any system cutting a certain
fixed circle orthogonally, the coordinates of this circle being proportional to the minors
of the constituents of any row of the determinant H(p+ k).

74. If the coordinates of a bitangent circle satisfy the condition which must be
satisfied by coordinates of any straight line, the corresponding equation will represent
the double tangents from the centre of the corresponding circle. In general, then,
there are eight double tangents.

75. It is clear that, if by any linear transformation of coordinates the equations
$=0, =0 become respectively ®=0, ¥=0, then the same value of & must satisfy
both

H(¢+7p)=0 and H(®+i¥)=0.

Hence the coefficients of the powers of % in equation (99) are invariants.

LEquation to Normal at any Point.—§§ 76-79.

76. Let (énlw) be the coordinates of any circle which cuts the curve ¢(xyzw)=
orthogonally at the point (2'y'2"w’), then by equation (75) we must have

0 0 0 0
<fa,g+”)5;+§a‘;+wa‘%;7>(¢+k¢’)=0: .o . (100)
for all values of £.
3 x 2
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77. It follows that if (X, w, », p) be the coordinates of the normal at (x'y'z'w’) we
must have

¢> ¢>
+ + E)w _O
0
+,U* aJ/ \Ir
and
0
+/U« a,W+ CHp =0

(ky, kyy ks, k) being the coordinates of the line at infinity. Hence the equation to the
normal is

N O Oy O =0. . . . . . . . (101)
oz’ ody’ ok’ ow
o 0 0P 0P

a«;p O N

Oy Ok Ohy Ok,

78. We can easily deduce from equation (101) that normals can be drawn from the
point (x'yZw’) to the curve ¢=0, at its points of intersection with the curve

9 0p 9 b | =0. . . . . . . . (102)
o oy oz ow

QY 02 ow
W N Oy
a’(:/’ ay/y az/ 2 aw/

oy oy
ok, ok, ok Ok,

This curve is clearly of the second degree, but since it is satisfied by (ky, ks, ks, %)
the coordinates of the line at infinity, it represents a circular cubic. Hence, in general,
eight normals can be drawn from any given point to the curve.

79. In the case of a circle cutting the curve ¢=0, normally at the point (x'y'zw’),
we shall have

.0 95

95

oy w 4» 8«1r
W oy Y o A5 5 =0,

TR ERT. FWE
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If then (énlw) be chosen so that

b6 06 0 0
0F __0n _0¢ 0o _ _
by oy oy ey LS

0f Op 0f Ow

the circle (éplw) will cut the curve ¢ orthogonally in four points, and we see at
once, that k must satisfy the equation

H(¢p+k)=0;

and then (éyplw) are proportional to the minors of the constituents of any row in the
determinant H{p-+k).

Thus it appears there are four circles which cut the curve ¢=0 orthogonally : and
these circles are identical with the four which are mentioned in § 73, as being
orthogonal respectively to the four systems of bitangent circles.

The Principal Circles.— §§ 80-82.

80. The four circles considered in § 79 have been called by MouTARrD the principal
circles of the curve. And the curve may be considered as the envelope of a system
of circles, which cut one of these principal circles orthogonally : it follows then that
the curve is its own inverse with respect to any one of the principal circles (hence the
principal circles must cut orthogonally); also the four points in which any principal
circle cuts the curve must be cyclic points; so that there are in general sixteen cyclic
points.

81. We may prove independently that the principal circles cut orthogonally, thus ;
taking for our system of reference an orthogonal system, so that the equation of the
absolute is

Y=+ 424 u=0;
then the coordinates of any principal circle being (éylw) we must have, if
b =ax®+ by + 2+ dw+ 2fyz -+ 292+ 2hacy - 2lacw + 2myw -+ 2nzw=0 ;

af+hntgltl o=—ké )
hé+b n+ fltmo=—lkn |
gé+fntelt+no=—k{ r
lé+my+nl+do=—ko JI

(103)
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where k£ is a root of the equation

a-lk, b, 7, [ .
h, b+rk,  f, m 1

73 2 c+k, n
{, m, n, d-+k

Let now (£%/{'’) be the coordinates of the principal circle corresponding to another
root k' of this equation; then multiplying equations (102) respectively by (§%'('w’)
and adding, we obtain at once

(k—F)EE"+mm' + {0+ wa')=0.

Hence, if £, &' be unequal, the two circles must cut orthogonally.

82. If the curve have four principal circles—.e., if the roots of the discriminating
quartic H(¢p=ky)=0 are all different, the curve cannot have a third double point—ifor,
inverting with respect to any principal circle, the inverse must also be a double point,
unless the point lies on the principal circle; since then a quartic curve can have but
three double points, in the case of a bicircular quartic, the third double point must lie
on each principal circle. Hence two of the roots of the discriminating quartic must
be equal, and there are only two principal circles.

Similarly, if this third double point be a cusp, it is easy to see, by inverting with
respect to a principal circle, that any circle touching the tangent to the cusp at the
cusp must touch the principal circle ; and hence there is only one principal circle, and
the discriminating quartic must have three equal roots.

Reduction of General Equation.—§§ 83, 84.

83. If one of the principal circles be a circle of reference (say x=0), then it is
clear that the terms involving wxy, @z, xw, must be absent from the equation.
Supposing, then, that the equation H(¢p-+ky)=0 has all its roots unequal, then there
are four pfinoipal circles, and taking these for circles of reference the equation must

reduce to the form
ax?+by*+ 2’ +dw*=0.

Suppose, now, that two of the roots of the discriminant are equal ; then taking the
circles corresponding to the unequal roots, and two circles cutting them orthogonally
as circles of reference, the equation will be of the form

ax® 4 by + 2+ dw*+2nzw=0 ;
and the system of reference being orthogonal we have for the absolute

4P+t =0 ;
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and, therefore, the discriminant is
(bt ) (b D) { (b)) — 17 =0,
which can only have equal roots when
(c+d)?—4ded4n*=0.

If n be real this can only be satisfied by n=0, c=d.
But of our four circles of reference one must be imaginary; if one of the circles
(%, v) is imaginary n will be real, and our equation will reduce to

ax®+byP+ e+ cut=0,

which represents a pair of circles, and need not be considered.
If both circles (x, y) are real, then it is simplest to take as system of reference, these
circles and their two points of intersection. So that the absolute is of the form

By =4dzw,
and the discriminant becomes

(k+a)(k+0) {ed—(2k—n)?}=0;

and, then, if this has equal roots, either ¢c=0 or d=0; and the ‘equation takes the

form -
aa? 4 by? 4 c2*4-2nz20=0,

which, by means of the absolute, may be written
am2i+ by*4-c2*=0.

Let us suppose now that three of the roots of the discriminant are equal ; referring
our coordinates to the circle corresponding to the unequal root, and any three circles
cutting it and one another orthogonally, the equation of the curve will reduce to

a4 by? - e dw - 2fyz+ 2myw - 2n2w="0 ;
and the discriminating cubic is
(k+a)| k+0, f, m =0,

2 k4c, n

m, n, k4+d |
which we can easily prove can only have three equal roots when

J=m=n=0, b=c=d;
provided that f, m, n are all real, in which éa,se the circle =0 is imaginary.
In this case the curve takes the form

aa® by + b2+ bw*==0,
which represents a point,
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If, however, =0 be real, we may take as system of reference this circle, a circle
cutting it orthogonally, and their two points of intersection ; then, since the absolute
1s of the form

24 yP=dnw,
the discriminant becomes

(k+a)| k+0, f m } =0
N2 ¢, n—2k
m, n—2k, d !
which can only have three equal roots when 2b=-—mn, m=d=0 ; in which case the

equation of the curve takes the form
a2+ by? — 4bsw--2fyz -+ c*=0,

and by taking instead of y==0, the circle y4-\z, which clearly cuts « orthogonally, we
can get rid of the term ¢z

And since
2’ yt==daw,

this equation can be further reduced to the form
ax® 42 yz=0.

84. Thus we see that the equation of a bi-circular quartic can be reduced to one of
three forms :—

(A)) ax® by 4?4 duw?=0,
in which case there are four principal circles, the equation of the absolute being
4y 24 uwt=0.
(B.) a4 by~ =0,
the equation of the absolute being
oyt =Aduw,

in which case there are two principal circles, which must be real, and a node which is
one of the points of intersection of these circles.

(C) ax®+2fyz=0,

the equation of the absolute being
2 yP=Adzw.

In this case there is only one principal circle (z==0); the curve passes through the
two common points of (z, ), and the point (x=0, y==0, 2=0) is a cusp on the curve.

Tt is also clear that circular cubics can be reduced to one of these three forms:
since we have seen thal the equation of the second degree represents a cubic when it
is satisfied by the coordinates of the line at infinity.
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CHAPTER VII.—CLASSIFICATION OF BICIRCULAR QUARTICS.
i. Method.---§ 85.

85. It will be convenient to take as the basis of our classification the nature of the
roots of the discriminating quartic; we shall thus have three species, each of which
may be subdivided into two—according as the double points at infinity are nodes or
cusps. We shall then have three similar species of circular cubics.

Using the notation employed by Sarmon (¢ Higher Plane Curves,’ § 82), we shall
denote the characteristics of a curve by (m, n, 8, 7, k, 1), and we see that we shall have
the following cases :—

m n 8 T P 2 Name.

1. 4 3 2 8 0 12

il 4 6 0 1 2 8 Cartesian
I, 4 6 3 4 0 6

v, 4 4 1 1 2 2 Limagon
v 4 5 2 2 1 4

vi. 4 3 0 0 3 0 Cardioid
Vil 3 6 0 0 0 9
vill. 3 4 0 0 3
IX. 3 3 0 1 1

(i.) may be called the general bicircular quartic ;- (iil.) is the general inverse of a
conic; (v.) is the inverse of a parabola; (vii.) may be called the general circular
cubic; (viil.) is the inverse of a conic with respect to a point on the curve; and (ix.)
is the inverse of a parabola with respect to a point on the curve.

General Bicircular Quartic.—§§ 86-92.

86. The equation of the curve may be written

a4+ by*+ 24 duP=0;
and if we write the absolute ‘
Vv=a+ 422+ ut=0,

the coordinates of the line at infinity will be 111 1, v.e., the reciprocals of the

’ 3 3
ve piq e . . Ty Ty Ty
radii of the principal circles.

87. The coordinates of any tangent circle at the point (2'y’2'w’) will be proportional to

(a+k)x', (b+k)Y, (c+k)7, (d+Ew.

MDCCCLXXXVT, 3Y
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The equation to the tangent at the point is, by equation (98),

(w-’m—‘— y'y —I-—Z’z -I—'lU"lU)( + Z;'-/ ‘ _l_gz.?_()ﬁ)

p) Ty

=(cm’w+by’?/+éz’z+dw'w)( +‘/ +: +w> L. (104)

The equation to the normal at the point (x'y’Zw’) is, by equation (101),
q ! p Y y €q

z, Y, %W =0. . C . .. (105)
:l, o, 7, w
ax’, by’ ¢, dw
1 1 1 1

> £
4 Ty 73 74

88. The coordinates of any bitangent cirele being (& 7, £, 0) we must have

| S R S

(a—d)a'™ (b—d)y' (c—d)"

Hence we must have

2 g

& - :
+5 0 L (100)

: n
m——d+b

—d

~ 89. The pair of double tangents which belong to this system of bitangen‘t circles
are given by

2

where

If ¢ be the angle between them, we can deduce ‘at once from § 65; remembering
that

e
2 1
_ u{@-d)(b-d)(a}z)(h‘l" +3+ >} .
tan ¢p= d‘_l_,<7 2+ >+ <1+%>+c._1:é i +:;g> c .. (107)

90. Since the foci may be considered as bitangent circles whose radii are indefinitely
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small, the coordinates of the fourfoci belonging to thé system, given by equation (106),
will be given by

%2 y% v2__—
a d+bjci+c a7
and '
2ty 4-27=0 ;
whence ; 2 2
@ 9 %
o=t = o=ai=d=@=ne=a © - - - (109

91. From the form of these equations it follows, that all curves whose equations are
of the form

s g e v
a2‘+70+,32'7|'76+')"2+70+82+k“.07. coee e (109)
and ‘ o '
+J2+ 2+'3T'° L (10)
will have the same foci.
Subtracting these equations, we have
2 2 w?

%a+m+3wuwf*%v+@ En

Hence the circles whose coordinates are respectively proportional to

& Y 2w
a2 2 ﬁ2 2 (Y2 5 82 2
z . Ly 2 o w

LAk AR P4l Sk

must cut orthogonally ; but these circles touch the curves given by (109), (110) at
their common points ; hence confocal bicircular quartics cut orthogonally.

Through any point, two quartics can be drawn confocal with a given bicircular quartic,
since the equation (109) is a quadratic in k.- 'We see, too, that two circular cubics can
be drawn confocal with a given bicircular quartic.

92. Let (énlw) be the coordinates of any circle S7; this will cut orthogonally one of
the bitangent circles, at the point (x'y’z'w’) on the curve
ax?+4-by? e+ duw*=0,
if . =
(a—d) E+(b—d)y'n+ (c—d)Z{=0.

It follows that two bitangent circles belongiﬁg to this system can be drawn to cut
S orthogonally ; and their four points of. contact lie on the circle

(a—d) gz (b—d)my+ (c—d)lz=0.
3 Y 2
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This circle intersects S in points lying on the circle

aéx+bny+clz+dow=0.

Hence, given any circle S, four pairs of bitangent circles can be drawn to any
bicircular quartic, cutting S orthogonally ; and their points of contact lie on four

circles, which have with S a common radical axis.

ii. Cartesian Oval.—S§§ 93, 94.

93. If one of the principal circles has its radius infinite, the curve will be symme-
trical with respect to the axis, which will pass through the centres of the other three
principal circles. If the foci which lie on this axis coincide with these centres, the
curve must have cusps at the circular points at infinity. Let us suppose the circle,
whose radius was 7, in § 86, to become the axis ; then by § 90, the coordinates of the

foci on the axis will be
22 v o2

(b—c)a—d) (c—a)(b—d)  (a—b)e—d)

If these points are the centres of the principal circles we must have

mHb—c)(a—d)=ric—a)(b—d)=ra—Db)(c—d) ;

which is equivalent to only one relation between the coefficients, viz.:—
1 1 1 1 1 1
P S P

since

KoY —
d+b—d+c —-d 0,

which are clearly satisfied by taking

NP =1y =07 ;

(111)

thus one of them coincides with the line at infinity, and so there is but one proper

double tangent.
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94. There are- two finite foci on each principal circle, their coordinates being
respectively proportional to

1 1
O, 773’ ;2: :l:;;:
1 . 1 1
7,3, 0, 7"1’ '_"I: 7,;
1 1 1
PRER 0, 'Z'ET

But they are all imaginary.

iil. Bicireular Quartics having o Third Node.—§§ 95-102.

95. The equation of the curve may be reduced (by § 83) to the form

ax*+ by +c*=0,
the equation of the absolute being
r+yP=4w;

and if 7, 7, are the radii of the two principal circles, e the distance between their
. . . . . . . 1111
points of intersection, then the coordinates of the line at infinity are PR
1 72
96. The coordinates of any circle touching the curve at the point («'y’z"w’) must be
proportional to (&, 9, {, ®), where

E _ n =20  =2f
(@+k)a’™ (b+k)y o —2kw' ™ —2k’

(112)

and, by § 72, the equation to the tangent line at (x'y’2"w’) will be

(24 gy =2 =20 = (S =0 et by o) s (119)
2 1 ’2

B

also the equation to the normal at the point (z'y’?" w') will be, by equation (101),

@, oy, —2w, =2 |=0.. . . . . . (114)
«, vy, —2uw, —2

ax’, by, e, 0

tor 2 2

oy e e

97. The circle (éplo) given by (112) will be a bitangent circle, if k=—a or —b.
In the former case we have
n —Zé,’ =20 _ cf—2aw
(b—a)y +2a2" ¢ +2aw' " 2a% "
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Hence
772

4
e a2+“’§o Y (S 1))

98. The double tangents Whloh belong to thls system of bitangent circles are
given by

P ,
o ‘E’ﬁ__
b—a o + @ =0,
and
2 2
B_ZZ_2P .
76 e

If ¢ be the angle between them, we shall have, since

tang="9 - V1,7 0 .. . L ... (116

Hence these double tangents cannot coincide unles;
7 2+ +w:0

in" which case, the double tangents from the centre of the other principal circle
coincide also ; but this equation is the condition that the curve should be a cubic.

99. If in (112) we-take k=0, we have a series of tangent circles passing through
the node, two of these circles will reduce to straight lines, which will be the tangents
from the node ; in this case we shall have

A _p_v_ =2
ad” byT 0 o
whence
Mo dp
«a ' b 7 _O ’
where

and the angle between them is given by

—4e/ a b e\l%

At e
4 1 1 *
P

These also coincide if the curve is a cubic.

tan =
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100. The foci corresponding to the principal circle (z==0) are given by

y? e dwz 0
b—a o' a
and
y =4z
Hence we have
y? 2 4z

=Z= C e e (1)

eb—a)" ab” c(b—a)

Similarly the coordinates of the two foci on the circle y=0, may be written down.
101. From the form of equations (117), it appears that all curves given by the
equation ,
22 e 2

a2+/c+bg+/c+c_"3: ’

are confocal with the curve
x? y2 22
o Tpte=0
Subtracting, we have
2 + P
a(a®+k) ' VPO +K)

0.

Hence the circles whose coordinates are respectively proportional to

z Y 0. —2.
a? ¥’ > 92’

® Yoo TF.
Ptr B 28

must cut orthogonally, but these circles touch the curves at their common points ;
hence confocal curves cut orthogonally.

~- Since we have a quadratic to determine x when (xyz) are given, through any point
two curves can be drawn confocal with a given curve; and two nodal circular cubics
can also be drawn with the same node and confocal with a given nodal bicircular
quartic.

102. The equation
o +by?+ =0

represents in general a nodal bicircular quartic, and by inverting with respect to the
node, we see that it is the inverse curve of an ellipse or hyperbola, according as a and
b have the same or opposite signs, with respect to some point in the same plane,
Such a curve then has two principal circles, with two single foci on each: it has
also four double tangents, two from the centre of each principal circle.
If one of the principal circles: becomes a straight line, it divides the curve
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symmetrically ; corresponding, in fact, to the case where a conic is inverted on a point
in one of its axes.

If the radii of both principal circles are infinite the centre of inversion is the centre
of the conic: e.g., the lemniscate, whose equation would be of the form 2?=a?(x*+1?).

iv. The Limagon.-—§ 108.

108. 1f one of the principal circles, in the last section, becomes a straight line, and
one of the two foci coincide with the centre of the principal circle, the nodes at infinity
become cusps. This case corresponds to inversion of a conic on a focus.

Suppose that 7, is infinite in § 95, then the condition that the curve should be a
Limagcon is, from equation (117),

47,,1720(01/ ._[)) = 4@2(1():620(0&—- Z)) ;

which, since we must have

becomes
dab=c(a—0b). . . . . . . . . . (118)

The double tangents perpendicular to the axis are given by

and

which equations are satisfied by Mry=ve=pe: so that there is only one double
tangent.

v. Bicircular Quartic having o Cusp.—§§ 104-109.

104. The equation of the curve may be reduced (by § 83) to the form
= 2ayz.

The system of reference being the principal circle (x=0); the circle (y=0) passing
through the cusp, and the other point in which the curve cuts the principal circle ; the
cusp (2=0) ; and the other point (w=0) common to the curve and principal circle.

Let 7, 7, be the radii of the two circles, e the distance between their points of
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intersection ; K the coordinates of the line at infinity ; then the equation to

“.[x—t
B
S
|-

the absolute W1]l be
2y = daw.

The curve is clearly the inverse of a parabola.
105. If (énlw) be the coordinates of any circle touching the curve at the point
(x'y7w’), we must have

E _ =20 =2
A+ ™ —ad +ky ™ —ay 20w’ =2k (119)
The equation to the tangent line at the point (x'y’z'w’) will be, by § 72,
<1 o =% ——y\(wx +yy' — 22w —2uz’)
"1 7o /
1, 1, 2
=(;ac +r—y—2 +w>(m —aZy—azy’); . . . . . . (120)
1 2
the equation to the normal being
x, Y, —2w, =2 | =0. . . . . . (121)
®, v, -, —27
[, —ad, —ay, 0
Lt 2 2
»’ ry ¢ e
106. The circle (énlw) will be a bitangent circle, if k= —1, in which case
& 20 n—al 2e+ap—aff
a4y T 2 —ay’T oy T 2w ’
whence
(n—alfP=4lw. . . . . . . . . . (122)
107. The two double tangents are given by
w2 —2auv—+ vt —4vp=0,
ﬁ_%’f__2p__0 :
O
the angle ¢ between them being given by
Al =oi))
tan ¢= ~+82‘)£z E Coe e oo (128)

MDCCCLXXXVI, 3z
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These can only coincide if

in which case the curve is a circular cubic.

108. Taking k=0 in (119), we have a series of tangent circles passing through the

cusp ; to find the tangents from the cusp to the curve we shall have

& —ad  —ay’
whence
aN+4up=0;
where

The angle between these is given by

1 2a)*
94— —=
e ery

p .

tan p=——_—5

¢ 'y

109. The focus of the curve is given by

(y—az)’=4duwe=17",
whence

vi. The Cardioid.—§ 110.

110. If the radius 7, of the principal circle of the curve

=20z

(124)

become infinite, the curve is symmetrical with respect to the axis; and if the single
focus on this axis is at an infinite distance, the curve has cusps at infinity, and is

called the cardioid ; being the inverse of a parabola with respect to its focus.

Referring to equation (124), we see that the condition is

a=4;
so that the equation to a cardioid is
x?=8yz.

(125)
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vil. General Circular Cubic.—S§ 111, 112.

111. We have already seen that the equation

ax®+by® + 2+ dw*=0,
represents a circular cubic when

a b c ., d
gttt =0 o (126)

where ), 1, 75, 7, are the radii of the four principal circles. The curve also passes
through the centre of each of ‘these circles.

By equation (104) we see that the equation to the asymptote (7.e., tangent at the

el L1 1Y
pom 7’1’ 112, 713, " 1S

ar by ez dw
B i et it PN (.4
v T P30

the equation to the tangent at the centre of the circle (x=0) being

a—b a—c a—d

a
—7“2—?/-1— “;:‘Z—l— thvz 0,
which is clearly parallel to the asymptote.

Hence the tangents to the curve at the centres of the principal circles are all
parallel to the asymptote.

112. As'in the case of the general bicircular quartic, there will be four systems of
bitangent circles, and on each principal circle there will be four single foci.. There are
clearly no double tangents. And if one of the principal circles degenerates into a
straight line, the asymptote is perpendicular to it.

viil. Nodal Circular Cubic—§ 113.

113. The equation considered in § 95,

ax®-+by*+c2*=0,

is a circular cubic, when

a b ¢
7,12+7422 +e‘3 =0.

This curve is the inverse of a conic with respect to a point on the curve. The
curve passes through the centres of the principal circles, the tangents being respec-
tively, by equation (113),

3z2
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)
(a— b)ﬂ e 9%= 0,
Ty e e
b— 2 b
Mm—»r—~€i£Z - 2 gl/{)——— 0 5

which are parallel to the straight line

oo by e
7‘1 +7'2 + ¢ 0,
which is the line joining the node to the point in which the line at infinity cuts the

curve, so that these three lines are parallel to the asymptote.
As in the case of the nodal bicircular quartic there will be two single foci on each
principal circle, and two corresponding systems of bitangent circles.

ix. Cuspidal Circular Cubic.—§ 114.

114. The equation
= 2ayz

represents a civcular cubic, having the point z=0 for a cusp, when

r, being the radius of its principal circle, 7, that of a circle cutting this orthogonally,
and passing through the cusp, and the other point common to the curve and its
principal circle.

The curve clearly passes through the centre of its principal circle, the tangent at
the point being

1. a ez 2w

which is parallel to

the line joining the cusp to the third point in which the curve cuts the line at
infinity ; hence these are parallel to the asymptote.

The curve has one syttem of bitangent circles, and one focus which lies on the
principal circle.
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Craprer VIiI.—MisceLrANEOUS THEOREMS.

Equation of an Anallagmatic Curve referred to Three Circles Orthogonal to the same
- Principal Circle.—S§§ 115-121.

115. If the system of circles (1, 2, 3, 4) be such that (4) is orthogonal to (1, 2, 3),
the equation of the absolute must be of the form

w4 f(eyz)=0;

also if (4) be a principal circle of an anallagmatic curve, its equation must be of the
same form ; by subtraction we see that the equation,

ar®+ b+ e+ 2fgz+ 292+ 2hay=0, . . . . . . (128)

may be considered as the general equation of such a curve referred to any three circles
cutting one of its principal circles orthogonally.

Thus, for any theorem proved in the case of conics we can easily derive an analogous
theorem for bicircular quartics or circular cubics.

116. Any bitangent circle of the system which cuts the given principal circle ortho-
gonally, must have for its equation

ax+By+yz=0, . . . . . . . . . (129)

and since it touches (128) , we shall have

Ca, kg, oa =000 (180)
b f B |
‘ g9 oo vy |

a, B, v, O ;

Referring to § 24, equation (22), we see that e, B, y are proportional to the areal
coordinates of the centre of the circle (129) referred to the triangle formed by joining
the centres of the circles (1, 2, 8), provided that «, ¥, z are proportional to the powers
of a point with respect to these circles.

We see, then, by equation (130), that the locus of the centres of all bitangent circles
of the same system is a conic; which is called by Dr. CAsey the focal conic of the
system.

117. Suppose now the circles (1, 2, 3) to be the other principal circles, then the
equation to the curve must be of the form

ax*+ by 4c2*=0,
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and the corresponding focal conic is
PRI I
a + b +, =0

And we see that the focal conic corresponding to one principal circle is self-conjugate
with respect to the triangle formed by the centres of the other three.

118. Or, again, in the case of a nodal curve; let (1, 2, 3) denote the other principal
circle, and its two points of intersection with (4); the equation of the curve is of the
form

ax® by +2fy2=0;
and the corresponding focal conic

S22 —aby*+2afBy =0,

which also passes through the node.
119. If the system of reference be three bitangent circles, the equation to the curve
must be of the form

a/a+bytev/z=0; . . . . . . . . (131)

and in that case the focal conic is
: a® b
=0,
a+ﬁ+v
In particular we see that if A, B, C be three foci on the same principal circle of the
quartic, or cubic, and P any point on the curve, we must have

a.AP+b.BP4e.CP=0.. . . . . . . . (132)

120. Suppose that the curve is a Cartesian, having cusps at infinity, then the focal
conics become circles.

It follows that equation (131) will represent a Cartesian if «, b, ¢ are proportional
to the sides of the triangle formed by the centres of the three bitangent circles (xyz).
Thus we have the theorem that, the sum of the products of the tangents, from any
point on a Cartesian to any three bitangent circles of the same system, into the
corresponding sides of the triangle, formed by the centres of the circles, is zero.

121. Let the circles (2, 3) be any two bitangent circles, and let (1) be the circle
passing through their four points of contact with the curve; then the equation of the
quartic must take the form

x?=2fyz,
Jal=2y.

If (y, 2) be foci, (x) might be called their directrix; and we see that the product of
the distances of any point on a bicircular quartic from two foci on the same principal
circle, is proportional to the square of the tangent from the point to their directrix.

and then the focal conic is
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Again, if (yz) denote the double tangents from the centre of the principal circle of
the system, we see that the centre of the focal conic coincides with the centre of the
polar circle of the centre of the principal circle, and the asymptotes of the focal
conic are perpendicular to the double tangents. It follows, then, that the focal conic
is an hyperbola or ellipse, according as these tangents are real or imaginary.

It follows, also, that the focal conic of a circular cubic is a parabola, whose axis is
perpendicular to the asymptote of the cubic.

Circle of Curvature at any Point of an Anallagmatic Curve.—§§ 122-124.

122. Let the equation to the circle of curvature at the point («'y'z'w’) be
Ex+ny+ &+ ow=0.

Then we must have & 7, {, o, proportional to the minors of z, %, 2, w, in the
determinant
&£y Y, %, w ’
®, oy, Y, wo
s, &y, &, Su i
W, &y, &%, Sw !

And as we are merely concerned with the ratios of the coordinates (z, v, z, w), we
may take w congtant ; so we shall have

£ Ui 4

8y 8% — 82" 8%y’ TS — oS 80/ &% — Sy &%

128. If' the equation of the curve referred to its principal circles be
a4 by~ e+ du*=0,
where the equation to the absolute is

424 w=0;
we shall have
axda~+bydy+-c282=0,

x4 ydy—+262=0;
whence
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hence
. ‘ 81!, qﬁg_a
So=(b—a)( =)

9, du__udy
5 y_(c_a)< y P >
Su uSz) .

8= (w-—-b)( =

so that
),?4? <§%ﬁ_3@/>

or since
(a—=D)y*+(a—c)*+ (a—d)uw?=0,

E=(a—b)a— c)ﬁ;&(d —a)w

W

Hence
3 _ U _ 4 — R
(a—b)(a—c)(a—d)x* (b—a)(b—ec)(b—d)y?  (c—a)(c—b)(c—d)z® (d—a)(d—Db)(d—c)w'*

So that the equation of the circle of curvature at the point (z’y'2’w’) on the curve

ax®+ by 4+’ du*=0,

(=t a—ofa—d)e ot (—a)(b—c)(b—d)yy
+(c—a)(c—b)(c—d)*2+(d— a)(d—b)(d—c)w3w=0 ;. (133)

and the points of inflexion of the curve lie on the tricircular sextic,
(b—a)(b—c)(b—a) St (c—a)(e —,-7))(crﬂc~l;)z3

s

o

(ct—vb)(ca—-—c)(ct—d)xg_l_
7 !
(=) d=D)d=c) s . (134)

+ ,

124, If R be the radius of curvature at the point (x'y2"w’) of the curve
ax?+ by~ 4+ duw*=0,

E2+7]2+ §2+0)2
:2.
<§+’Z .|_§ +2‘_’>
4

we shall have
Ri=

3

™ Ty Po
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And it may be easily verified that
E2 P L 0= (a2 12 2P dw'?)P ;

so that
(a2 + V2% + 2 + dPu'?)}
R
_ (= Wa=0)e=d | (p= =)=, 5 | (=== g
" 7y 7y
3

PART IIL—SYSTEMS OF CIRCLES ON THE SURFACE OF A SPHERE.
CuAPTER [.-—GENERAL SYSTEMS OF CIRCLES.
The Equation of a Small Cvrcle on a Sphere.-—§§ 125, 126.

125. Let ABC be a spherical triangle, having all its angles right angles : then, if we

denote the sines of the perpendiculars from any point P on the sides of the triangle
by x, v, z, we have at once
Byt 4=1;

and again, if (xyz), («'y'2") be any two points, ¢ the angular distance between them,
xx! +yy 2’ = cos .
So that the equation of a small circle is of the form

ax—+by+cz=1,
the coordinates of its centre, and its radius, being given by

y__&__COST
a b ¢ 1’

&

and if (zyz) be any point, whose angular distance from the centre of the circle is ¢, we
have

a4 by~ cz= cos ¢ sec 7.
It follows from this that, if the angle of intersection of the circles

ax +by +cz =1,

o'+ b'y-l—c'z: 1,
MDCCCLXXXVI, 4 A
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be », and the distance between the centres ¢, then

tan 7 tan 7" cos @ =1— cos ¢ sec  sec 1
=1l—aa'—bb'—cc . . . . . . . (136)

126 The equation of a great circle will be of the form

ax—+by+c2=0;

and the angle of intersection of this with the circle

a’x4+by4cz=1,
will be given by

tan 1 cos w=— cos ¢ sec 1’

=—(ad/+00 +c); . . . . o .. (137)
and for two great circles we shall have

cos w=—(ada’ 4bb" +cc’).

The Power of Two Circles on « Sphere—S§§ 127, 128.

127. If », +/ be the angular radii of two small circles on a sphere, ¢ the angular
distance between their poles, and o their angle of intersection, then either of the

expressions
tan 7 tan 1’ cos w, 1— cos ¢ sec 7 sec 17,

may be defined as the power of the circles. Denoting the power by o (or if S, 8 are
any circles by 7 &), we see that mg =0 if the circles cut at right angles, and if they
touch g o*=m 5.7y, 9. In the case of a pair of points P, P": 7y p=1-— cos ¢=2 sin® }¢,
where ¢ is the distance between them.

Tt will be convenient to define the power of a great circle, with vespect to a small
circle, as the product of the tangent of the radius of the small circle and the cosine of
the angle of intersection : thus

m = tan r cos w = — cos ¢ sec 1 ;

and the power of two great circles, as the cosine of the angle between them.
128. If O be the pole of a small circle, radius 7, and P any point on the sphere, then
if Q be taken in the arc OP so that

tan SOP . tan $0Q = tan? ir,
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Q may be called the inverse point of P with respect to the circle whose radius is 7, or
simply the inverse of P with respect to O.

It may be easily shown, if S, S’ be any two small circles, by forming the equations
of the inverse circles with respect to A (§ 125), that the expression

o Tss
\/ To,s-To, s
is invariable,

Gfeneral Theorems.—§§ 129-132.

129. If (1,2, 3, 4, 5), (6,7, 8,9, 10) denote any two systems of cireles on the surface
of a sphere, the powers of the former are connected with those of the latter by the

identical relation
1,2,3,4,5\
H(a: 7,89, 10)‘ 0-

This is at once proved by multiplying together the matrices,

1, a, b, . ¢ s 1, —a, 'f'bs’ —Cg
L, ay by ¢ 1, —a; —=b, =—c;
1, as by, o4 1, —ag —bg, —c
1, a, by, c, 1, —a, =—b, —c¢,
1, as, b o 1, —an, —by, —cy
Whence we get
60 T _ T8  Ti,9  TL10 =0,

To, 60 T,y Ta8  To9,  To1p
3,60 T35 3,8 T30 3,10

Ta,60  Ta,p T4,80  Tg90 Ty 10

5,60 T, s  Tsa  Ts10

1,2.3,4,5 \
H<6’7’8,9’10>—0.. N  E5)!

1.e.

130. It is evident that this result is true if one, or more, of the circles are great
circles, provided that we interpreted the meaning of the symbol 7 in accordance with
the definition in §127. Again, it is true, if the radius of any of the circles is zero.
And we also see it is true if any circle of either system 1s such that the coordinates
of its centre are zero; t.e., any circles of either system may be replaced by the

4 A2
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imaginary circle at infinity, which we will denote by 0 ; and we see that we must take

6 =1, and
ms,o=11f S be any small circle,

mpo=11f P be any point,

ms,e=0 if S be any great circle.

131. If then wg ¢ be the angle of intersection of the circles S, S we may deduce at
once from equation (138) -

| 1, cobry, cotr, cotry, cotrg | =0.. . . (139)
| COL7y, oS @y COS WG COB @ g COS g ‘
oty  COS @y COS @y COS @y, COS Wyg

cot rg,  COSwg; COSwgg COS gy COSWsg |
|
Locobry,  COS @y, COS @ COS @y COS Wy g

132. Exactly as in § 8, we can prove that
/1,2,3,4\1°_ /1, 23,4 5,6,7,8
{H\a 6,7, 8)} —H<1,2, 3,4) X H<5, 6,7 8>' e (140)

CuaPrER IT.—SPECIAL SysTEMS OF CIRCLES.
Circle Cutting Three Circles Orthogonally.—S§ 133, 134.
133. Let the circle cutting the system (1, 2, 3) be denoted by (), then since

H(@, v 1, ’3>=0,

0,2 1,2 3
we have
0,1,2,3\ /1,2, 38\
”‘”’-”'H<e, 1,2 3)‘“11 <1, 2,3/’

and if the equations of the circles (1, 2, 3) be of the form

ax+bytez=1,
we have at once

/6,1,2,8\ | 1, 0,0 0, 0 X 1, 0, 0, 0
1 6,1,2,3/
G, 1, 2, 1, —a, —b, —c¢ 1, a, b, ¢
]., ""'a/;z, _‘bz, ""'02 1, 0(,2, 1)2, 02
J., '—(113, '—bg, '_‘03 E ]., a3, b3, 63 i

2]
;
= _;{“é sec? rysec® rysec® g {V(1, 2, 3)3%; . . . . . (141)
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where R is the radius of the sphere, and V(1, 2, 8) denotes the volume of the tetra-
hedron formed by the centre of the sphere and the poles of the circles (1, 2, 3).
Hence the radius of the orthogonal circle of the system (1, 2, 3) is given by

C o g 6 ;
Si® 7y S1n” 7, SIN” 7. R | — 1 COS w COS W
tan? r = 1 2 3 p L S Wy, 3

36 vV, 2, 9%
!

cos @y, —1, COS w, 5 ‘ (142)

COS Wy, COS wgo, —1

134. If the three circles meet in a point, 7 must be zero, hence

1,28\
m(y )=

Four Circles having a Common or Orthogonal Circle.—§§ 135, 136.
135. Let (z) denote the common orthogonal circle of the system (1, 2, 8, 4), then,
since
21,2, 8,4\
H(y, 1,23, 4)‘0’

1,2,3, 4
II<1,2’3’ >=o. o (143)

it follows that we must have

This is clearly the necessary and sufficient condition that the system (1, 2, 3, 4)
may have a common orthogonal circle.
136. If (5, 6, 7, 8) be any other system of circles, we must also have

1,234\
n<5, oy 8>_o. L (148
As a particular case, we have
1,2,3, 4\
H(m, 1, 2, 3>—O’
where () denotes any other circle.
We deduce that
2,3, 4 1, 4,3 1,24\ 1,2,3
’“‘71'H<1, 2, 3>+””‘12'H<1, 9, 3>+”@‘v3'n<1, 2, 3)“‘"”v4'n(1, 2, 3) -+ (145)

But from (144) we can deduce, as in § 24, that,

1,2,3\12 . /1,23 5,6, 7\
{H (5, 6, 7>} =1 (1, o3 3>XH <o 6, 7) ;
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so that (145) may be written,

1,2,3\7% ZERNE 1,4, 3\7% 1,2, 4\7¢
7""’4-”{”(1, 2, >} :7’-"”{” <z 3, 4>} +7T”"2{H (\1, 4, )f +7T’“’3{H<1, 2, 4))1

But if r be the radius of the common orthogonal circle, we have, by § 133,

H<1’ 2, 3> n<2’ 3, 4>
1,23 0 0 0 2,3,4) _y

2/ — cos? 1, cOSY 7% C N 2 =K,
V(@2 apT 8 RO DO v s oy

36

tan? 72=cos? 7. cos? 7. cos? 7
o tan® r°==cos” 1, cos" 1, COS" 7

Hence we have

1008 7 V(1, 2, 8)=1m, .cos 1. V(2, 8, 4) 1, g.c08 7. V(1, 4, 3)
"I"’7T:1:’3-COS /)43.V(1, 2, 4) ; . (146)
which result may also be written

T4, 4-COS T4 ==0L.COS 7.7, +B.COS T9ums o F+y.COS Pyt g s+ . . (147)

where «, 8, ¥ may be defined as the areal coordinates of the pole of the circle (4) with
respect to the triangle formed by the poles of the circles (1, 2, 3).
Thus, if A, B, C be the triangle, P the pole of (4), then

_ V@, B, 0)_sin (perp. from I’ on BC)
“_V(A, B, ©)™ sin (perp. from A on BC)’

As a particular case of (147), let « be a point, O say, then A, B, C being the centres
of (1, 2, 3), and P being a point on the circle which cuts them orthogonally, we shall
have

1— cos OP=a(cos 1, — cos OA)+ B(cos 7,— cos OB)+y(cos 73— cos OC),

or more generally, P being the pole of a circle which, with (1, 2, 8), has a common
orthogonal circle,

cos 7, — cos OP=a(cos 7, — cos OA)+B(cos 7,— cos OB)-+1y(cos 73— cos OC).

Orthogonal Systems.—§§ 137-139.

187. Four circles may be said to form an orthogonal system if each one cuts the
other three orthogonally. Tt is clear that the pole of any one of four such circles must
be the orthocentre of triangle formed by the poles of the other three.



MR. R. LACHLAN ON SYSTEMS OF CIRCLES AND SPHERES. 531

Let (1, 2, 3, 4) be such a system, then if (x, y) be any other circles we must have
from the equation
2,1,2,3,4\
H(g/, 1,2,3, 4>—0’

Ta,0Ty,2 o, 4-Ty,4 .

Ty 1T Ty 0Ty 3
=T fTEETE s . (148)

1,1 9,2 3,3 Ty, 1

whence we have as particular cases

(1) w4, cOt2 7 F1m0, 4 COL® 1yt 4 COL® P31, , cOEP 1= — 1,

(ii.) s ® cot? )4, ,® cot® ro+mr, 5* cot? vyt 2 cot® ry=tan® r,,
where « denotes any circle, radius 7, ;

(i) mm,, cot® 74, , cot® 1yt 5 cot® ry4m, , cot® 7,=0,

(iv.) ., ? cot® |+, 0¥ cot® 1y, 4 cot® g+, 2 cot? r,=1,
where z denotes any great circle ;
(v.) cot? ;4 cot? 1o+ cot® ry4 cot? r=—1; . . . . . . . . (149)

so that one of the circles must be imaginary.

138. If the circles (1, 2, 3, 4) form a system not having a common orthogonal circle,
we may find four other circles, (5, 6, 7, 8) say, such that each of the latter is orthogonal
to three of the former. One such system may be called the “orthogonal system ” of
the other.

Let x,  denote any two circles, then since

we shall have

To, 5Ty | Te6Ty9 | TorTys | TegTy4
8T g 6T Tl s | Lt ... (150)
1,5 9,6 3,7 4,8

whence we obtain as particular cases

101 1 1
S S e =m,=1, . . . . . L (151)

L5 Toe  T37 Tas

and, x denoting any small circle,

Ev,{_’”iﬁ 75&'1_}_55,8:1_

Ty, Toe  T3,7 748
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139. The system of circles (1, 2, 3, 4) may be called a “ semi-orthogonal” system, if
(1, 2) cut orthogonally in the points (3, 4). Then «, 4 denoting any circles we have
by

2

21,2 3,4\
H<g/, 1, 2,3, 4:>—-0’
the equation

o9y | Ta gyt Mo g Ty 3

Ty =2V T0L L A T Coo . (152)

L1 Ta,9 KEN?

If 2¢ denote the arc between (3, 4) we have as a particular case,

—1=cot? 7,4 cot® r,— cosec*c. . . . . . . . (153)

Circles touching one another.—§§ 140-144.
140. If the four circles (1, 2, 8, 4) touch one another externally, we shall have from

the equation
1,2, 3,4
H@: 123, 4>:°’
4+ cot? r, 4 cot? 1yt cot? 1y cot® r,
=2{cot 7, cot r,+ cot », cot 74+ cot r, cot 7,
-+ cot 7, cot 1y + cot 7, cot 7+ cot 75 cot 7} ;
whence

cot 7= cot 1+ cot ry=+ cot 1342 {cot 7, cot i34 cot 15 cot 7+ cot ) cot ry—13E. (154)

141. We may also easily extend the formule (39) and (40) in § 31.  Thus, let two
circles (1, 2) be described, with angular radii e, y, and let another circle radius » be
described touching these internally, and having its pole on their common diameter.
Let 8, be a circle touching this circle internally, and (1, 2) externally; and let a
series of circles Sy, 9, S,, &c. be described touching externally (1, 2) and the preceding
one in the series ;.and let the radii of these circles be 7y, 7y, 75, &ec.

We shall have, since S,_; and S, touch S,

cot 7, =2 cot 7,4 cot r,_,=2(cot a- cot y);

whence, exactly as in § 31,

cot, 7, =n*(cot e+ cot y) — cot; »

.
VSN
=————=—cot
sin o sin g
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So that

8in o sin o sin »

tan 7,= (155)

7? sin? 7 — cos 7 sin « sin ¢

Similarly if §';, §';, 8’5, &ec. be a series of circles touching (1, 2) and one another
externally, and &', touching the common diameter of (1, 2), we shall find

4 sin a sin ¢y sin »

tan 7, = (156)

(2n—1)? sin® r—4 cos 7 sin « sin o'
142. Since

T2yt V4 T, 2Ty, y = tan 7, tan 7,(cos w, ,+1),

we infer from § 82 that if the four circles (1, 2, 3, 4) are all touched by another circle
externally, then we must have

COS §®) 5.C08 Sy 1+ o8 $o) 5.008 Jw, ,4-cos Jwy 4.c08 Jo, y=0,

y, being the angle of intersection of the circles (1, 2).

This formula must be slightly modified if the tangent circle does not touch them all
externally : if, for instance, the circles (1, 2) have contact with the tangent circle of
opposite nature, then cos $w, , must be replaced by sin L, ,.

143. If this condition be satisfied the radius of the circle touching the circles
(1, 2, 8, 4) may be easily found by means of § 188. Thus, let the orthogonal system
of (1, 2, 3, 4) be (5, 6, 7, 8); and let the contact be external in each case.

Then since

we shall have

an 7, | tan rg +tan 7y

tanr, =t
cot ro=-" '+ +
T,5 9.6 KEN 4,8

.o (L57)

144. If the system of circles (1, 2, 3, 4) be such that four other circles (5, 6, 7, 8)
can be drawn to touch them all, symmetrically, say let each of the latter touch one of
the former internally and the others externally; e.g., let (5) touch (2, 3, 4) externally :
then since

where (2, ) denote any other circles, we have

— 4y = 23, 1.7, 5 cOb 7y cot 17— (T, .ot 7 )(Sr, 500t 1)
MDCCCLXXXVI. 4 B
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whence as a particular case,

(cot 7, 4-cot 74+ cot 754 cot 7,)(cot 75 cot 7ot 7, 4-cot 1)
=442(cot 1, cot r5-+cot 7, cot ry-cot r5 cot rycot ry cot ). . . (158)

An example of this would be, when (1, 2, 3, 4) are the inscribed and escribed circles
of a spherical triangle, and (5, 6, 7, 8) are the corresponding nine-points circles.

CuaaprTER JII, —CIRCLES CONNECTED WITH A SPHERICAL TRIANGLE.

Regarding a spherical triangle as formed by the arcs of three small circles, most of
the theorems concerning the three species of circles, connected with a triangle formed
by great circle-arcs, may be readily extended. It will be seen that there is a much
greater resemblance than there is between the corresponding formulse for plane
triangles formed by arcs of circles and straight lines. We shall suppose that the
circles intersect in the points P, Q, R, P/, Q’, R/, the former points lying within the
triavgle formed by arcs joining the poles of the circles; and we will call the angles
of the triangle P, Q, R—a, B, v; then the formule for any other of the eight
triangles which make up the whole figure may be at once written down by changing
two of the angles into their supplements. We shall use r;, 7, 7y to denote angular
radii of the circles, and r to denote the angular radius of their orthogonal circle.

The Circum-circle of a Triangle—§§ 145, 146.

145. If z denote the circle which passes through the points P, Q, R, the points of
intersection of the circles (1, 2, 8); and if (4) denote the orthogonal circle of the
system (1, 2, 8), we shall have, since

exactly as in § 39,
KEN YRS

r \
VL8 a2 8\ 3, 1\1* 1, 2\1}
e = ) )

1,2, 3 3
II( ’ 2? >—_—_—-R§ mi4i V(1, 2, 3)}? sec® 1y sec® ry sec? 1y,

But
2,3\ 36 . N
H(Q’ 3>=I%~6 sec® ry sec® .. { V(P, 2, 8)3%,

where R is the radius of the sphere, and V(1, 2, 3) denotes the volume of the tetra-
hedron formed by the poles of the circles (1, 2, 3) and the centre of the sphere.
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Hence we obtain

Taa ™ Tz __ V@, 2, 3)cosr; +V(P, 3, 1) cos r,+ V(P, 1, 2)00513
T V@, 2, 3)

or if w be the angle of intersection of the circle PQR with the orthogonal circle to
(1, 2, 8), we may write

tan P _ V(la 29 3)
tanrsecw  V(1, 2, 3)+V(P, 2, 3)cos 7+ V(Q, 3, 1) cos 7, +V(R, 1, 2)cosry *

(159)

1,2,3
146. Again, if pyq, p,e &ec., denote the minors of =, m , &e., in H(l ‘2 9> we
shall have, as in § 39,

0, \/:“1.1’ \/l“'g 2 \/P’«a,g : (160)

A \//:"1_1—’ 1,15 1,95 1,3
v ie,2 M, 15 g, 95 3
v 3,3 3,15 F«s,éa | 3,3

Moo Mgy =T {HC
’ 1

’7"24, €

1ot
L VO
N~
\__V._J
e

But
2,3\ 36
B, 1_H< >_]¥ sec? 1y sec? r5{ V(P, 2, 8)}%;

hence

36
—tan®  sec? 1, sec? ry sec? 1y tan® 2% {V(1, 2, 3)}*

R
= ! 0, V(P, 2, 8)cos 1, V(Q, 8, 1)cosry, V(R, 1,2)cosy |;
- V(P, 2,3)cos 1y, 1,15 1, 95 1,3
V(Q, 8, 1) cos 1y, Mg, 1 3,9 Ma,3 |
V(R, 1, 2) cos r, M3,15 g 55 Mg, {

whence may be deduced,

cos? @= sec s.cos (s—a).cos (s—@B).cos (s—y),. . . . . (161)
where

2s=a-+L+y.

If the three given circles are great circles, then the imaginary circle 6 will be their
orthogonal circle, in this case equation (160) reduces to,

— cot? 7,= sec s.cos (s —a).cos (s—B).cos (s—y);

the ordinary formula for finding the radius of the circum-circle of a spherical triangle
482
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The Inscribed and Hscribed Circles of a Triangle.—§§ 147, 148.

147. If the inscribed and escribed circles of the triangle PQR cut the orthogonal
circle at angles w, o, 0,, w;, we have, as in § 43,

K.cos® w =2(14 cos a)(1+4 cos 8)(14 cos y)
K.cos® w;=2(14 cos a)(1 — cos B)(1— cos y)
K.cos? w,=2(1— cos a)( 14 cos B)(1— cos y)

( ( I )

K.cos? wg=2(1— cos a)(1— cos B)(1+ cosy

s . (162)

where
K= cos® a+ cos® B+ cos® y+2 cos a cos 8 cos y—1

=4 c0s 5.€08 (s—a}.cos (s—B).cos (s —y).

In these formule cos® w has been written for , and so, if the given triangle

Ty, Ta,e
be an ordinary spherical triangle, cos® @ must be replaced by —cot?® s, ; thus the above
formulee correspond, in the case of an ordinary spherical triangle, to the formulee,

— 1 1 1

N cot » =2 cos & cos 58 cos gﬂ
- ‘n 18«

N cot ;=2 cos Sa sin 3B sin &y |

2

N cot 7,=2 sin L& cos $B sin Ly

YL
|
N cot 7,=2 sin L sin £ cos 27J

where
N2= — cos s.cos (s—a).cos (s—[3).cos (s—7y).

In our present case, the radii will be given by formulae similar to

K(cot 7.+ cos w cot 7)+ 0, cotr, cotr, cotry (163)

1, —1, cosy, cosfB !
|
|

l 1, cosy, —1, cos a
| 1, cosB, cosa, —I1

148. In exactly the same way as in § 45 we may show that, associated with every
triangle, there are eight circles analogous to the nine-points circle of a plane triangle,
each of them touching four of the circles, which touch the sides of the spherical
triangle ; that is, taking any one of the eight associated triangles formed by three
circles, say P Q R, the inscribed and escribed circles are touched by another circle.
If this circle cut the orthogonal circle of the triangle at the angle @, we shall have, as
in § 46,

cos? w=4 sec s.cos (s—a).cos (s—B).cos (s—y), . . . . (164)
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and we also infer, from § 46, that this circle cuts the sides of the triangle PQR at the
angles B—vy, y—oa, a—p.

Comparing equation (164) with equation (161) we see that if the circle PQR cut
the orthogonal circle at the angle w, then cos w=2 cos . Whence we infer that in a
spherical triangle formed by great circle arcs, the radius p of the nine-points circle,
and the radius R of the circum-circle, are connected by the formula

cot p=2 cot R.
In the case of a general spherical triangle, this is replaced by the formula
cot p— cot p'=2(cot R— cot R'),

where p, R are the radii of the analogous circles connected with the triangle, and
o, R’ the radii of the corresponding circles connected with the inverse triangle, with
respect to the orthogonal circle of the triangle.

CrAPTER IV.—POWER-COORDINATES.

Definstion.-—§§ 149-151.

149. Given any system of circles, say (1, 2, 3, 4), on the surface of a sphere, then
any circle (great or small), or any point, is completely determinate when its powers
with respect to the system (1, 2, 3, 4) are known, provided that this system be not a
system having a common orthogonal circle.

If then P be any point, we may define the coordinates of P referred to the system
(1, 2, 3, 4) as any multiples, the same or different, of the powers of P with respect to
these circles; thus denoting the coordinates of P by (xyzw), then ki, &y, ks, k, being
any constant multiples, we may take

x=ky.mp, 1, Y=kytp o 2=kgmpg, w=kymp

Since wp =0, and mp ,—1, we see at once that the coordinates of any point must
satisfy a homogeneous quadric relation, viz.,

P, 1,2 84\
H(P, 1,23, 4.>—0’
and a non-homogeneous linear relation,

P, 1,234\
H(e, 1,2, 3, 4>—0’

The former is called the equation of the Absolute, and will be usually denoted by
Y, 1/, 2, w), and then the latter may be written
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3
b5+ S ++a;’,’—K}
or Brooo o oL L (164%)
o ‘If LN |
az, L+ Yo, T F T a/”“ )

where %;ck, as usual, means the partial differential coefficient of i with respect to «,
1

(kyy oy ks, k) being afterwards put for (x, v, z, w), and where K is some constant.
150. If S be any small circle, we may define the coordinates of S with respect to

the system (1, 2, 3, 4) as constant multiples of the powers: thus, denoting them by
£ 1, ( v, we will take

'5=k17fs,1’ ”’)=k2-77s,2, Z=703-7Ts,3’ W= FyTg, 4 5

ky, kyy ks, &y having the same values as in § 149.

Since s =1, we see that the coordinates of any small circle must satisfy the non-
homogeneous linear relation

3 5
1a‘g+k2"’+/cg»5’;+k Vg . .. . . . . (165

151. If, however, S be a great circle, we shall have, since mg,=0, mgs=—1, the
homogeneous linear relation,

1ag+k +h, +7«"f ... .. (160)

and the non-homogeneous quadric relation,

2, G w)=~K. . . . . . . . . . (167)

The Small Circle—§§ 152-157.

152. If P be any point on the circle S whose coordinates ave (¢, 9, {, ), we shall
have by the equation

sinee mp =0,
oy +a"’ a”’z+a"’ (168)
oF o¢
Thus the equation of a small circle is of the first degree.
It follows that the equation of the first degree, say

ax~+by-cz+dw=0,
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will represent in general a small spherical circle, whose coordinates are given by

N o oY oOF .
0f _0n _0f 0w K

@ b ¢ d =akl + bkey + ooy +dl,

(169)

by equation (163).
153. Given any two circles whose coordinates are (&, 9, {, w), (¢, v, {, &), their

power = is given by
(g 15 1) =0
or
rK=¢ g—‘g-+n'-aai7’:-+ c'%%w' oL ()
and the radius 7 of the circle (énw) will consequently be given by,

— tan?r. K=2y(&, 9, {w). . . . . . . . (171)

154. It follows that the radius of the circle

ax+by—+cz+ dw=0,

will be given by
Ay Uy Oy Oy O =0;. . . . (172)
dg1y  Ogg Ogz Ggyy O
U3, (g9 Qg5 Uy ©
Uyrs Oggs gz Qggo O
a, b, ¢, d, M tan? »
where

M= — 2 (aky + Dbyt oy -k’
and where @, 1, @4, &c., are the coeflicients in the equation of the absolute, so that
Y(ayzw) = oy, 2+ 20, 2y + . . .
155. Again, the power of the circle (énl{w) with respect to the circle

ax—+by+ci+ dw=0,
is clearly given by

_ af+bn+cf+do
T b bk o td,t (173)
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156. And further, the power of the two circles,

ax—-by-cz-+-dw =0,
ax+by+cz-+ dw=0,
will be given by
O oy gy Qg O =0; . . . . (174)

o1y ooy Uag  Coy O
(3,15 U39, g gy C
g1y Ogoy Qg g
a, U, ¢, d, Mnr

where

M= (k- Dy ol b (0 b Uy Oy d ).

Whence, if the two circles cut at an angle ¢, we have

a%—l—b%p ’O\If i—d’%%
v O L. (175)

2/ (a, b, ¢, d) W (a, b, , d)

COS p=—

where
W(a, b, e, d)=—| a,, G, s G, «
Uy, (ggr Cggy oy 0
A3,15 Qg U3y Uy
1> Cygr  Cygy (g

|

d, b, C, d, 0

157. The coordinates of 6, the imaginary circle at infinity, ave evidently &y, ky, ks, ky;
and the equation of this circle is

o o ,
ai_ﬁ -l- a/c +4a].,.3+% 5 P v e e (176)
its radius is equal to tan™4/—1.

The Great Circle.~§§ 158, 159.

158. The equation of the first degree
ax~+ by~ cz+dw=0,
will represent a great circle on the sphere, when

aky+0ky+-chy+-dky=0; . . . . . . . . (177)
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and if this condition be satisfied, its coordinates will be given by

Ay v

0t _dn_93t do__  JIRA
S=T=02Ta L (1)

by equation (167), where ¥ has the same meaning as in § 156, and where

A=
A1,1 A9 Qi3 Ay

(g1 Ugg Ugg gy

Qg1 Ug9 O33 (g4

g1 Cao Ogg Oy
159. The power of the great circle (&nlw) with respect to the small circle

ax—+by+cz+dw=0,

is given by .
__ af+by+cl+do

K= whey + bley + cley + e,

as in § 155.
But if the equation ax--by-+cz+dw=0 represent a great circle, then the power of
any other circle (énlw) with respect to it is

= A/ B8 (g byoltdo). . . . L ... (17Y)

The angle between two great circles whose equations are given is the same as that
given by equation (175).

The Point.—§§ 160-162.

160. The power of the point (xyzw) with respect to the circle

ax-+by+cz-dw=0,
is equal to
az—+ by + cz -+ dw
ahy + bley + oy + dle,’
or

(ax—+by+cz+dw) ?Z%i;

according as the equation represents a small circle or a great circle.
MDCCCLXXXVL 4 ¢



562 MR. R. LACHLAN ON SYSTEMS OF CIRCLES AND SPHERES.

161. The power of two points (wyzw), (x'yz’w’) is, by equation (168), given by

WL SICL SR, L
7K =zx Oz Ty dy +2 0z Fw dw’
which, since
P(eyzw)=0, Y(x'y'z'w")=0,

may be written
—2nK=y{(x—2), y—y', z2—2, w—w'}.. . . . . (180)

162. If R be the radius of the sphere, and (A, B, C) any three points, we have by

equation (141),
1 0,A,B,C
6, A, B, C

L B S L R ¥
Hence, if (zyzw)), (2ay22510,), (@5y525w05) be the coordinates of A, B, C, referred to
the system (1, 2, 8, 4), we shall have
VABC)=p| @y, a, x5 k|5
Y Yo Y

21, 2 %3, ]{’:3

36 )
>=—R_ﬁa (V(A, B, 0)}2;
and by § 132

(181)

-

wy, Wy, Wy, ky

where
- 1,234
35,5%1%2%32/%2‘n<1’ vy 4>+R6_»—_Oa

Coordinate Systems of Reference.—S$§ 163, 164.

168. There are two convenient systems of reference : (i.) four mutually orthotomic
circles, called the orthogonal system ; (ii:) two orthogonal circles and their two points
of intersection, called the semi-orthogonal system. A particular case of the former
would be three great circles cutting orthogonally and the imaginary circle at infinity.

(i.) If the system (1, 2, 3, 4) be an orthogonal system, we shall find it most
convenient to take ky, ky, ks, k, equal respectively to the cotangents of the radii
of the circles (1, 2, 3, 4). So that the equation of the absolute will be

"J("'B! y} z, w):mz+y2+22+wzzo ;
and referring to § 187, we see that we shall have

K=-2,
and
W(a, b, ¢, d)y=a+b*+c4-d?;
also we have
cot? 7,4 cot? ry-+ cot? ry+ cot® ry=—1.



MR. R. LACHLAN ON SYSTEMS OF CIRCLES AND SPHERES. 563

(ii.) If the system (1, 2, 3, 4) be a semi-orthogonal system, we may take k= cot 7,
ky= cot 7y, ks=k,= cosec ¢, where 7, 7, are the radii of the circles, 2¢ their common
chord. We shall have by § 149,

Y(ayzw)=u~+1y*—z2w,
K=-2,

Y(abed)=a?+b*—1Lcd ;
and also
cot? 7,4 cot? r,— cot® e=0.

164. By §128, if two circles S, S’ be inverted with respect to any point (O) on the
sphere, then the expression
s, s

\/770’3.71'0’ s

is unaltered. Hence, if (@yzw) be the coordinates of any point referred to a system
(1, 2, 8, 4), and (XYZW) be the coordinates of the inverse point, with respect to any
point (O), referred to the inverse system with respect to the same point, we must have

x=aX, y=18Y, Z:')/Z, wz?/W;

and if £ 7, {, ® be the coordinates of any circle, the coordinates of the corresponding
circle referred to the new system will be af, By, y{, Sw: aﬁyS being some constants.

CHAPTER V.— GENERAL EQUATION OF THE SECOND DEGREE IN POWER-
COORDINATES.

Nature of the Curve,—§ 165.

165. The most general form of the equation of the second degree may be written
&(, y, 2, w)=ax?+by*+c2+ dw + 2fyz + 29z -+ 2hacy + 2w+ 2myw-+2nzw=0, (182)

(zyzw) being the coordinates of a point, and therefore satisfying the equation of the
absolute ¥, which is also of the second degree; it follows, then, that the general
equation of the second degree contains only eight arbitrary constants,

Let P be any point on the curve, and let the Cartesian coordinates of P referred to
rectangular axes through the centre of the sphere be X, Y, Z; and let R be the radius
of the sphere, then by § 125 we see that we may put

e=X4Y*+2*—a, X—bY —c,Z,

y=X24-Y+ 22—, X —~b,Y—c,Z,

=X+ Y+ 22—, X —0,Y —c,Z,

w=X+Y*4Z°—a,X—0,Y —c, .
4¢c2
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Substituting for (x, ¥, 2, w) in equation (182), we see that the curve in question is
the curve of intersection of the surfaces

XY 22==R?,
and
(X2 Y2+ 222+ U (X Y7224+ U,=0,

U, and U, being homogeneous expressions of the first and second degree respectively
in (X, Y, Z).

So that the curve is the complete intersection of a sphere with a quadric surface,
and therefore may be called a ““spheri-quadric.” These curves have been extensively
studied. Casey calls them sphero-quartics (“ Cyclides and Sphero-quartics,” (1871).
“Phil. Trans.,” vol. 161). Darsoux calls them spherical cyelics (*Sur une Classe
remarquable de Courbes et de Surfaces Algébriques, 1873). Mr. H. M. JrFrFERY
(‘ London Math. Soe. Proc.,” vol. 20, 1885, p. 102) has proposed to call them sphero-
cyclides. The name spheri-quadric 1s due to Professor Cavruy.

Equation to Tangent at any Point.—§§ 166-171.

166. Let (&plw) be the coordinates of any circle touching the spheri-quadric
P(zyzw)=0 at the point (xyz'w’), then Y(wyzw)=0 being the equation of the absolute,
we must have

o + +a"r 428 =,

oF

Nrs \If O, O L

8’;‘ ~—|—- + 8 +8~sz0 =0,
+8¢’8 —«}-8(’584 +a¢ S’ =0,

axlr

8 +a‘iﬁ8y +8 ,Sz +- T‘kﬁw =0,

And hence we must have

Oy o Oy oy
06 _ oy _ 3% _ w ... .. (183
9 G Ob 09 b0 0N 0 By ue

3 o o ay o oy ow +E ow’
where £ is indeterminate.
Hence every circle which touches the curve at the point («’y2"w’) has its equation

of the form

(o fby b (b Rp)=0. . . (184)
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167. To determine the equation of the tangent (i.e., tangent great circle) to the
curve at the point (x'%2w’), we must determine % in equation (184), so that the
equation may be satisfied by (k k,k;%,) the coordinates of the circle at infinity. Thus
the equation of the tangent is

(bt t bt hg ) (5E 405+ 2 ulk)

e Tt s P A 1) MR L)

168. The circle given by equations (183) or (184) will touch the curve at the point
(w//yllzllwll) if
O0p 0% 0p O Op Oy Op 0%
a AT vk R vV 80+]aw_
pO 0 Oy 0p 0w b O]
a + a /! a //+ a 7/ a //+ a 7’ aw// aw//

v.e., if k satisfy the quartic equation

e ¢ @ 2 | ($+kp)=0,
0¥  Owdy’ Owd?  Oxow
2 ? ? o?
w0y Oy oyod  oyow
o2 ? o o
007 O0yor 0P Owow
o o o >
Owow’  Oyow’  oww’  ouP

e.,

H(¢+kp)=0,. . . . . . . . . . (186)

where H(u) denotes the Hessian of u.

We infer then that there are, in general, four systems of bitangent circles, each
circle belonging to a particular system cutting a certain circle orthogonally; the
coordinates of these four circles being proportional to the minors of the constituents of
any row of the above determinants, corresponding to the four values of £.

169. If the coordinates of a bitangent circle satisfy the condition

0
18?4‘]6 1!"""]9'3 \p+k %:Oa

the circle is a great circle; there will, in general, be eight such great circles, two
belonging to each system of bitangent circles.
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170. If the coordinates of a bitangent circle satisfy the equation of the absolute, the
circle reduces to a point and corresponds to a focus of a plane bicircular quartic—
there are clearly sixteen such foci, four on each of the circles which cut the bitangent
systems orthogonally. Dr. Casey (“Cyclides and Sphero-Quartics”) calls these
single-focl.

171. Tt is clear that, if by any linear transformation of coordinates the equations
¢=0, y=0 become respectively ®=0, ¥=0, then the same value of k which satisfies
H(p~+kp) =0 must also satisfy H(D-4A¥)=

Hence the coefficients of powers of k in the equation (186) are invariants.

Equation of the Normal at any Pownt,—§§ 172-174.

172. Let (&y{w) be the coordinates of any circle which cuts the curve ¢(ayzw)=0

s 7 7

orthogonally at the point (x"y'2"w’), then we must have

<§ax,+»,, ag/+‘:a'+ aw>(¢+k¢)= coooo .. (187)
for all values of £
178. It follows that the coordinates of the normal (i.e., great circle) at («'y’Zw’)
must satisfy

op 0O W0
fézi a/ +§ w/—O,

o O OO
£ +77 o +€az’ +og =0,
L .
58/9 zc2+§ak3+“’ak4"0’
Hence the equation of the normal is
o oy O S | =0.. . . . . . . (188)

0w’ oy’ o’ ow

o 06 o Op
ox’ oy’ oY’ ow
Ny Y
oz” oy’ o o

O Of Oy Oy
ok’ Oky Ok O,

174. From equation (187) we can deduce

o 9P
E

5+ a‘é’f+ o _

Yoty 8"’+— N 9"”—-0
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If then (énlw) be so chosen that

0 o 0
0f __ 817 _ot _
oy oy oy a«lf =

9F o o o

then the circle (éplw) cuts ¢(xyzw) orthogonally in each of the four points in which it
meets it ; we see at once that u must satisfy the equation

H(¢-+ph)=0,
which is the same equation as in § 168 ; the coordinates of the four orthogonal circles
corresponding to the four values of u, being proportlonal to the minors of the deter-

minant H(¢p-4pu).
The Principal Circles.—§§ 175=179.

175. The four orthogonal circles found in the last article are usually called the
principal circles of the curve. By §168, we see that a spheri-quadric is the envelope
of a series of circles which cut one of the principal circles orthogonally, and it is
evident by inversion that the curve must be anallagmatic; ¢.e., its own inverse with
respect to each of its four principal circles ; also each point in which a principal circle
cuts a spheri-quadric must be a cyclic point on the curve ; there are in general sixteen
such points. Again, the double great circle tangents are the tangents which can be
drawn from the poles of the principal circles.

176. It is easily proved, as in § 81, that any two circles corresponding to different
values of k given by H(¢-+/%y)=0, cut orthogonally ; hence; if the four roots of the
discriminating quartic be different there are four principal circles which are mutually
orthotomic, and the poles of these circles must be such that the arc joining any two is
perpendicular to the arc joining the remaining two.

177. If the roots of H(¢+ky)=0 are all different, then we can reduce the equation

to the form
ax*+ by +c2* +du*=0,

the system of reference being the four principal circles; and @, b, ¢, d being the roots
of the discriminating quartic.

178. If two roots of the quartic H(p-4ky) are equal, then taking the two principal
circles corresponding to the two other values of %, and any other circles forming with
them an orthogonal system, as circles of reference, we can reduce the equation to the
form

ax® 4+ by? 4-c2*+ dwP~+ 2nzw=0,
and, exactly as in § 83, we see that if one of the two circles (x, ) be imaginary,
then the discriminating quartic can have two equal roots only when

c=d, n=0;
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in which case the equation reduces to
ax®+by*+ e+ cur=0,

which represents two imaginary circles.

But if (x, y) be both real, then by taking for system of reference the two principal
circles (#, %), and their two points of intersection (z, w) we can show that the equation
may be reduced to the form

ax®+ by’ +c2’=0,
the equation of the absolute being
w4y =4zw.

A spheri-quadric represented by an equation of this form has a finite node, viz., the
point z2=0.

179. Now, let us suppose the discriminating quartic to have three equal roots, then,
ag in § 84, we can show that if we take as system of reference the principal circle ()
corresponding to the unequal root, the node (2), and the circle (y), passing through
(2), cutting (x) orthogonally, and passing through the other point (w), in which ()
cuts the curve : the equation may be reduced to the form

ar=2fyz.

The point z is clearly a cusp, the circle =0 being the cuspidal edge.

Observation.—If we suppose two of our circles of reference to be great circles, the
curves degenerate into sphero-conics. As from § 128, it is clear that inversion is
merely equivalent to a linear transformation, nodal and cuspidal spheri-quadrics are
the inverse curves of sphero-conics.

CrarTER VI.——CLASSIFICATION OF SPHERI-QUADRICS.

The method followed in Part I. for the classification of bicircular quartics is not
suited for a systematic classification of spheri-quadrics, for which see Casgy, “On
Uyclides and Sphero-Quartics,” chap. xi. In this memoir it is only proposed to
discuss the chief properties of the curves, following the crder of chap. vii., Part I.

General Spheri-guadric.—§§ 180-184%.

180. The equation of the curve is of the form
ax? 4 by~ e+ dw*=0,
and the equation of the absolute may be taken as

oyt =0
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where the coordinates of the circle at infinity are cot 1, cot 1y, cot 75, cot ry; 7, 7, 75, 74
being the radii of the principal circles.

181. The coordinates of any circle touching the curve at the point (2'%2w’) must be
proportional to

(at+k)x, (b+Ek)y, (c+k), (d+k)w'.
The equation to the tangent at the point will be,

(@' 24-y'y+ 2 2+ww)(ax’ cot 74Dy’ cot ry+cz” cot r5+dw’ cot 1)
= (aa's4by'y+ e’z dw'w)(a’ cot v 4y’ cot 742" cot ry+w’ cot ). (189)

The equation to the normal at the point (z'yz'w’) will be,

@, Y, 2, w =0. . . . . (190)
@, Y, 7, w’ |
ax’, by, e, dw’ i
cotry, cot 7y, cotrg, cotry !
182. The systems of bitangent circles will be given by,
. 7 & o M
=0, b——a+c-—a+d—a—0
Lo, Bt o
=0 Lot a0
S ¢ K20
=0, a——c+ b—c+d—c_~
_ & 7 & _
©=0, a—-d+b——d+c——d_o_)
and the coordinates of the single foci will be given by,
=0 - y? _ & _ w? h
T (e—=d)b—a)” (d—D)c—a) (b—c)(d—a)
—0 x? _ z? _ w?
=0, (c_d)(co——b)‘—(cl——a)(c—b)_(a——c)(:l—b) Lo ()
z=0 2 = y’2 = v
7 G=d)e—0) (d—a)b—c) (a—b)(d—0)
N 22 _ % _ 22
w=0, (b—c)(a—-ol)_(c—a)(b—d)—(a——b)(c-——tZ)J

The curve has also six double foci (see Casry, ““ Cyclides,” § 130), and thus the
twenty-eight points of intersection of the eight common tangents of the curve and
the circle at infinity are accounted for.

MDCCOLXXXVI. 4D
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183. From the form of the equations (192), it follows that all curves given by

%2 :l/2 2 .
artats +K+bg 0, . . . . . . . (193)
must be confocal with the curve
w?
+ ﬂ2+ +b2

Subtracting these equations, we have

a? w?

e 22 _
At @0 TPt T YT

Hence the curves cut orthogonally at their common points.
And since equation (193) may be regarded as a quadratic in «, we infer that
through any point on a sphere two spheri-quadrics can be drawn confocal with a

given spheri-quadric, and these two cut orthogonally.
184. We may prove exactly, as in § 123, that the coordinates of the osculating

circle at any point (x'y2"w’) on the curve
a4 by +c2*+ du*=0,
will be proportional to

(a—b)(a—c)(a—d)ja?, (b—a)b—c)(b—d)y?, (e—a)(c—b)(c—d)=",
(d—a)d—b)(d—c)w®; . . . . . . (194)

and if R be the radius of curvature at the point we shall have by § 154, -

(0?2?40 * 2>+ dPw®)t.cot R
=(a—b)(a—c)(a—d) cot raz+(b—a)(b—c)(b—d) cot ryy"
+(c—a)(c—Db)(c—d) cot ryz*+(d—a)(d—b)(d—c) cot 7qw™. . (195)

184%. If one of the principal circles is a great circle, the corresponding foci may
coincide with the centres of one of the other principal circles; in this case the curve

has been called by CAsEY a “sphero-Cartesian.” Thus suppose '1“4_—_31, and let one of

the foci on w=0 coincide with the centre of the circle whose radius is 7, the coordi-
nates of this point are — cosec 7, cot 7y, cot 73 ; and the necessary condition that the

curve

ax®+by*+c2*+ dw’=0
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may represent a “ Cartesian ” is given by

cosec? r; | cot?r, _l_cot2 g
a—d b—d ' c—d

(196)

Spheri-quadrics having o Third Node.—§§ 185-189.

185. The equation of the curve is of the form
ax?+by?+c2*=0,
the equation of the absolute being
ty=zw;

where the coordinates of the circle at infinity are cot 7, cot 7, cosece, cosece; 7, 7,
being the radii of the two principal circles, and 2e the arc between their points of
intersection.
186. The coordinates (én{w) of any circle which touches the curve at the point
(®'y'z'w’) are given by
28 29 —o _ —{

(a2~ (b+2k)y ™ ¢ —kw'™ —ke"

‘T'he equation of the tangent at the point will be,

(2 e+ 2"y —w'z—2'w) (o’ cot 74Dy’ cot ry4-c2 cosec e)
= (aa'z~+ by’ y+c'2)(2x cot 7,42y’ cot 1y—w’ cosec e—7 cosece). . (197)

The equation of the normal at ('yz'w’) will be,

2, 21, —w, —z =0. . . (198)
2%, 2y, —_a, -2

ax’, by, ¢z, 0

2cotr;, 2cotr,, —cosece, — cosece

187. The systems of bitangent circles will be given by

g ke )
=0, b-a+ @ a? =0 I

£t e [’

»

C oL (199)
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and the coordinates of the foci by

=0, y‘zzzwzg)—;bc—b)czz ) ‘
(200)

— I ol ) 9
y=0, a’=zw= a7

J

188. From the form of these equations we see that every curve whose equation is

of the form

@y P
0‘2+K+ﬁ2+/€+'yz b
1s confocal with the curve
xﬂ ?/2 zfl
and subtracting we have
2 o 0
2@t REE

Hence two such curves intersect orthogonally.
We infer that through any point on a sphere two spheri-quadrics can be drawn
confocal with a given nodal-spheri-quadric ; and these curves will cut orthogonally.

189. If rgzg and the coeflicients a, b, ¢ in the equation

ax®+by*+c2*=0,
satisfy the relation
(@=b)e=ab, . . . . . . . . . . (201)

then one of the foci on the principal circle y=0 coincides with the centre of the
other principal circle, and the curve becomes a Cartesian, having a third node.

Cuspidal Spheri-quadrics.—§§ 190-192.

190. The equation of the curve is of the form
x*=2ayz,

the system of reference being the principal circle, the circle orthogonal to it through
the cusp and the other point, in which the principal circle cuts the curve, the cusp

and the other point common to the two circles.
If »,, 7, be the radii of the circles, 2¢ the arc between their points of intersection,

we may take the equation of the absolute as
-yl =zw,

the coordinates of the circle at infinity being cot 7, cot 7y, cosec e, cosec e.
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191. The coordinates (énlw) of any circle which touches the curve at the point
(y'Zw') must satisfy
26 0% —e  =¢
A+20 —ad +2ky —ay —kw' ke

The equation of the tangent at (z'y’7w’) will be

(22’ 42y y —w'z—w2') (2’ cot 1, —az’ cot 9*2—oiy' cosec e)

=(a'c—az'y—ay'z)(24 cot 42y cot ry—(w'+2") cosece). . . (202)

The equation of the normal at (x'y’2'w") will be,

2, 29, w, 2 =0.. . . . (203)
2, 21, w, 4
x, —a7, ay, 0

2cotr, 2cotr,, cosece, cosece
192. The system of bitangent circles is given by
£=0, (p—alP=lw. . . . . . . . . (204)

The focus of the curve is given by

S=tec=S L L L L. (205)

Equation of a Spheri-quadric Referred to three Circles Orthogonal to one of its
Principal Circles.—S§§ 193-198.

193. Let w=0 be one of the principal circles of a spheri-quadric ; then if (z, v, z)
are any three circles orthogonal to w, the equation of the spheri-quadric must be of

the form
w+f(x, y, 2)=0,

and the equation of the absolute will also be of the same form. Hence, by subtraction,
we have for the equation of the spheri-quadric

ax®+ by + e+ 2fyr+ 29z +2hay=0,. . . . . . (206)

and this is a form to which the equation of any spheri-quadric can be reduced.
194. We shall find it convenient to suppose the coordinates (xyz) to be equal to the
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powers of a point with respect to the three circles of reference; then by § 136,
equation (147), the equation of any circle orthogonal to w will be given by

ax+By+yz=0, . . . . . . . . . (207)

where e, B, y are proportional to the triangular coordinates of the pole of the circle
referred to the triangle formed by the poles of the circles (z, ¥, 2).
Suppose, now, the circle given by (206) to be a bitangent circle of the spheri-

quadric (205), then we must have

‘ a, ]7,, g, o =O. . . . . . . . . (208)
h, b, f, B
g9 Jfi ¢ vy
a, B, vy, O

Hence it follows that the poles of all bitangent circles belonging to the same system
lie on a sphero-conic; or again, the spheri-quadric (205) is the envelope of circles
whose poles lie on (208), and which cut a given circle w=0 orthogonally.

195. If the circles (x, 9, z) are the other three principal circles of the curve (205), we
know that the equation of the curve is of the form

ax®+by*+c2*=0,

hence the equation of the sphero-conic is

2 B o
=0
Thus the sphero-conic corresponding to one principal circle is self-conjugate to the
triangle formed by the poles of the other three principal circles.
196. Again, in the case of a nodal-spheri-quadric the equation of the curve referred
to its other principal circle, and the two points in which its two principal circles
intersect, is of the form

ax®+by*+ 2fy2=0,
so that the equation of the sphero-conic must be
SR —aby*+2afBy=0.

Thus the sphero-conic must pass through the node.
197. Let (y, 2) be any two bitangent circles, () the circle which passes through their
four points of contact ; the equation of the curve takes the form

x*=2fyz,
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and the sphero-conic must be given by

S =2By.

As a particular case, we may suppose (¥, z) to be the pair of great circles which can
be drawn from the pole of (w) to have double contact with the curve, and then it
follows that the centre of the sphero-conic coincides with the centre of the circle
which passes through the points of contact of these double tangents : 7.c., the centre
of the sphero-conic coincides with the centre of the polar circle of the centre of w
with respect to the spheri-quadric.

198. Taking for circles of reference any three bitangent circles orthogonal to w, the
equation of the curve takes the form

ar/xz+4+bvy4c/2=0,
and the equation of the sphero-conic becomes

b?

a? e
=0

Hence, if P be any point on the curve, A, B, C three foci on the same principal
circle, then

a.sin SAP+b. sin BP+c.sin CP=0. . . . . . (209)
Or, again, if the curve is a sphero-Cartesian, so that, the sphero-conic becomes a circle,
then A, B, C being the centres of any three bitangent circles of the system, P a point
on the curve ; 2p, 2¢, 2r the tangents from P to these circles ; we have

sin La. sin 1 p+ sin 3b. sin ¢+ sin e. sin =0, . . . . (210)

a, b, ¢ being the sides of the triangle ABC.

PART TII.—SYSTEMS OF SPHERES.
CoHAPTER I.—GENERAL SYSTEMS OF SPHERES.

The Power of two Spheres.—§§ 199-201.

199. The power of two spheres is the square of the distance between their centres
less the sum of the squares of their radii,
Thus if any two spheres be denoted by (1, 2) we shall have

— 2 CYpr . .
1y, =) g =112 — 15 = 2775 COS @ 4
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where o denotes their power, |, r, their radii, o, , their angle of intersection, d, ,

the distance between their centres.

The definition is due to DArRBoUX (“ Annales de 'Ecole Normale Supérieure,” vol. 1,
1872); it is also given in a paper to be found in CrirrorD’s ¢ Mathematical Papers,’
p- 332; the date of which paper is assigned by the editor as 1868 (see note on p. 332).

200. If the equations of two spheres be

a2 224 2fic +29y +2hz +¢ =0,
P42+ 2 w429y + 20 24 ¢'=0 ;

we have at once for their power

m=c—4¢' —2ff —299'—20K. . . . . . . . (211)

Extending the definition given in § 4, the power of a sphere and a plane may be
defined as twice the perpendicular distance of the centre from the plane ; thus the

power of the sphere
a2 2f e+ 29y + 2hz+ =0,
and the plane ‘
x cos a4y cos B4z cos y—p=0,

will be
r=2p—2f cos a—2g cos B—2hcosy.. . . . . . (212)

And similarly the power of two planes may be defined as twice the cosine of the

angle between them.
Also if 6 denote the plane at infinity, S any sphere, or point (considered as a sphere

of indefinitely small radius), we shall have

o, s=1 ;

and if L be any plane, m, ;=0 ; and also m, ,==0.
201. If we take the inverse spheres, with respect to a sphere whose centre is the

origin and radius R, of the spheres

B4y 224 2f x4+-29y +2hz 4-¢ =0,
Py 222 w429y + 20 2+ =0 ;

we see at once, that the power #" of the inverse spheres is connected with the
power of the original spheres by the formula
Rt

s
T =T, ,
cc )
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whence we deduce at once, denoting the spheres by S, S,, and the inverse spheres by
SI]? S,‘Z:

T8,8y e T8

. . . e '\/770, 5,"70,5, \/WO: 5'1'776;;'2’
(0) denoting the origin.
And generally, if «, y denote either spheres, points, or planes, we infer that the
expression ‘

‘/7"0,@"770,:'/

is ﬁnaltered by inverting on the pbint (O).

General Theorems.—S§§ 202-205.

- 202. If we have a system of six spheres, say (1, 2, 3, 4, 5, 6), their powers with
respect to any other system of six spheres, say (7, 8, 9, 10, 11, 12), are connected

by the relation
1,2,3 4, 5, 6\ _
H<7, 8,9,10,1 ,12)"0'

For if we multiply together the matrices

’ 2];’ 29] 3 217’1; Cy ’ Cys —f:}', =9 - h']‘,

1 1 ;
1, 2f, 295 2hy o ¢y  —fo  —9s —hs 1

1, 2fy, %295 2hs o ¢, —JSo —Yo —hy 1

1, 2/, : 296 2y, ¢, i G100 — /10 910 —hyg, . 1_

1, 2j%, 295 2k, ¢ \ 1 e —fn =Y —hyy, 1

L 20, 296 2hg Gy —he —%e —hy 1

we have at once the equation,

S myp ML MLy MLl L 7 | =0,
To,ms T8 T Ta10e  To1l To12
T3ys T8 T30 Tgi100 7311 73,12
Ty Tag  Ta9  Tyg100  T4,110 T412

Ts Tse W9 M1 Tsile Tsi2

Te,rs  Tess  Te9  Tgio0  Teile  Tel2

2,3, 4,
n<1’ .3, 4, 5, 6>=0; Co L (213)

ne.,

7,8,9,10,11,12
MDCCCLXXXVI, 4 B
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a relation which is clearly true when any of the spheres are replaced by planes, or

points, or the plane at infinity.
203. An important case is when the plane at infinity is a member of both systems

of spheres; thus taking the two systems as (6, 1, 2, 3, 4, 5), (6, 6,7, 8, 9, 10), we

have
6,1,2,3,4, 5\
H(e, 6,7,8,9, 10)“0’

whence, if the radii of the spheres be all different from zero, and they cut at angles

wy,q &c., we have

L 1 1 1 1 =0. (214)
0, ) ) ) ) - :
(! Ty 73 " 75
1
'I)T‘, CcOoS w1’6, COS wg, 6 Ccos w&G, Co8 wd‘,s, COS w5,6
6
1
;:;, cos @1 7y cos Wy 7y C.OS W3,y CoS Wy 75 COSs Ws v
1
;;, cOs wl,s, COS wg,s, CoS w3’8, CcOSs w4’ 8 COs ws’s
1
',):9-, COos wl, 9 Ccos wZ, 9 CcOSs w3, O COoS w4, 0 COS w5,9
1 v
P COS @y,10, COS Wy 19, COS g5, COS Wy 10,  COS W59

204. If we have two systems of five spheres each, say (1, 2, 3, 4, 5), (6,7, 8, 9, 10),

then we have

H((I; 3, z, g:, 15o>=‘ L 2A, 201 2, o | X | cp —fo —9p —hs 1 |;
T 1, 2.]%{ 29, th, Cy Crs —ﬁ’ =9 "'"h’b 1
L 2f3’ 295, 2k3’ Cs Cs f'fs: — 9 —hs’ 1
L 20 29, 2k ¢4 ¢y —fu —gp —hy 1
L, 2f; 295 2h; o ¢y —fo —% —ho 1

1,2,3,4, 5\12__/1,2,3,45 6,7,8,9,10
{H<6 7,89, 1O>} _H<L 2,3,4, 5>XH<6, 7,89, 10> oo (215)
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205. Again we have

H((;, 1 2 3 i>= 0, 6, 0, 0, 1 x | 1, o, 0 0 0
B S 1, 2/, 2¢, 2k, ¢ ¢, —fo —g» —Mh, 1
1, 2fy 29, 2hy ¢ | Coy  —fo —Go —hg 1
1, 2f, 2¢5, 2hs, c; ¢y —fo —Gp —hy 1
L, 2f, 29, 2k, ¢ o —fo —G» —hy 1
=8 - =9 —k, 1 |?
—fo —G9» —hy 1
_f?,, —Ys —h3-> 1
—fo —J» —hy 1
=288.{V(1,2,3,4)}%;. . . . . . . . . . . . . . (216)

where V(1, 2, 3, 4) denotes the volume of the tetrahedron, whose vertices are the
centres of the spheres (1, 2, 3, 4).

Again, let P be the common point of the spheres (1, 2, 3), then if P be denoted by
the symbol (4) we have

| 6,1,2,3,4
9 s Ly “y Yy
288.{V(1, 2, 8, P)} -—H<e, 1,23 4)

-
-

L L

’n-], 2 771)3,

\.
3
=
=
S

s> T3,1, T3,3 T340

’ 0’ 0’ O’

S O o O =

0
1
L 791, o0 Tas
1
1

1,23
= _H(1, 2, 3>'
Thus, if P be a common point of the system (1, 2, 8),

H(i’§’§)=—28&w(1,2, S, P . . .. . . (217)

4 1 2
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CHAPTER II.—-SPECIAL SYSTEMS OF SPHERES.
Sphere Cutting Four given Spheres Orthogonally.—§§ 206-208. |

206. Let x denote the sphere which cuts the four given spheres (1, 2, 3, 4)
orthogonally ; then, since
0,2,1,2,3 4\
HQ&LQ&Q—Q

3,4\ /1,234
3J—Hﬁz&4’

(1)

we have
0,1, 2,
meliy )

whence, by equation (216),

- 1,23 4
“* =988V, 2, 3,

Hence the radius of the sphere is given by

I 11(1 2,3,4)}%
1 1,2 3,4
TSN (218)

207. If the radii of the spheres (1, 2, 8, 4) be all zero, and the sides of the tetra-
hedron (1, 2, 3, 4) be denoted by a, b, ¢, @', V', ¢/, we have at once,

—H(l’ 2, 33 4}_ _ O, 0(/2, b'.?’, c? l

1, 2,3 a/g’ 0’ C/.Z, le t
b, ¢% 0, o {

Lo b? ad? 0

=20%"2c%"? 4+ 2c%c2a’a’? + 207020 — atat — DIVt — ¢t

=16 o.(c—aa')(c—bV)o—cc’);

where

2o0=aa'+bb'+cc'.

Hence the radius of the sphere circumscribing a tetrahedron is equal to

1 {o(o—aa’)(o =bV')(o — )}
5 v se e e e e (219)

where V denotes the volume of the tetrahedron, which agrees with the known value

(TopHUNTER, ¢ Spherical Trig.,” § 163).
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208. If the four spheres meet in a point, the sphere which cuts them orthogonally
will be coincident with this point, and so the radius must be zero. Hence, if the
system (1, 2, 3, 4) have a common point, we must have

120,4:_ )
H<l24)0....‘.....(220)

Five Spheres hawing a Common Orthogonal Sphere.—§§ 209-211.

209. Suppose the system of spheres (1, 2, 3, 4, 5) have a common orthogonal sphere,
x say ; then, y denoting any other sphere, the equation

21,2, 8,4, 5\ _
H<y, 1,234, 5)"0’

leads at once to the condition

1,2,3,4,5\
H<1’2’3)4’5>..0,. C e (221)

which is the necessary and sufficient condition that the system may have a common
orthogonal sphere.
Similarly, if (6, 7, 8, 9, 10) denote any other system of spheres, we should have,

since
2, 6,7,8,9,10\
H(y, 1,2,3,4, 5 ).._O,
6,7,8,9,10\
H(l, 2,3, 4, 5>"‘0 ’
and hence

6,789, 10\1? _/1,2,3,45 6, 7,8, 9,10
{H<1, 2,3 4, 5 )} "H<1, 2, 3, 4, 5> XH(G, 7,89, 10)'
210. Tt is easy to prove, that if’ the system of spheres (1, 2, 3, 4, 5) be such that

the condition (221) is satisfied, then any four of them vull be connected with any
four other spheres (6, 7, 8, 9) by the relation

27, 8, 1,234 6,78, 9
{H<1, 2, 3, 4)} "H<1, 2, 3, 4) X H<6, 7, 8, 9>'
211 Suppose now (x) to denote any sphere, then the equation

@, 1,2,3,4\
H(l, 2,3, 4,5 =0



582 MR. R. LACHLAN ON SYSTEMS OF CIRCLES AND SPHERES.

gives us
1,23 4 1,284 1,23, 4)
”“”1'H<2, 3, 4, 5>_””’2'H<1, 3, 4, 5>+”"”3‘H<1, 2,4, 5,
1,2, 3,4\ 1,284\
_m’@.H<1, 53 5 +7. 5 H<1) 3 4'>——0 ;

applying the theorem of § 210, we have

,2,3, 4\]¢ 2,3,4,5\1% 3,4,
70'{11(1, 2,3, 4)} ="’”’1’{H<2, s>} +7T{H<u :

Ty 5

But if # denote the radius of the common orthogonal sphere, we have by

equation (218)
, 3, 4 ,3,4,5 3,4,51 4,5,1,2 5,1,2,5
H< 3,4> H<2, 3,4.,5) H<o,4 5,1 > Ty 51, >_H<5, 1,2,3),
4

=V, 2 34 V(2,3,45) VG,451) V45152 V(51,23 0

and thus our equation becomes
705 V(1, 2, 8, 4)=m, . V(2, 3, 4, 5)+m,,.V(3, 4, 5, 1)
+2,5.V(4, 5, 1, 2)4m,,.V(5, 1, 2, 3).

Thus, if any five spheres have a common orthogonal sphere, and the tetrahedral
coordinates of the centre of one of them, (5) say, referred to the tetrahedron formed
by the centres of the other four (1, 2, 3, 4), be a, B, v, 8, then the powers of any other
sphere are connected by the relation

To s =0T+ BTogty Mgty . . o . L . (222)

As a particular case, if A, B, C, D be the centres of (I, 2, 3, 4), P any point on
the sphere cutting these orthogonally, and O be any other point,

OP!=a.(0A*—7?)+B.(OB?—1?) 4+5.(0C*—r%)48.(OD*—1?),
a, B, v, 8 being the tetrahedral coordinates of P referred to ABCD.

Orthogonal Systems of Spheres.—§§ 212-214.

212. Five spheres may be said to form an orthogonal system if they cut one
another orthogonally. It is clear that the centres of any four must form a tetra-
hedron, such that the perpendiculars from the angular points on the opposite faces
meet in a point, viz., the centre of the fifth.
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If the system be denoted by (1, 2, 3, 4, 5), then (x, y) denoting any other spheres,

we have, since
2 1,2, 3, 4,5\
H<y, 1,23 4,5)/=%

the formula

- e Ty T3 Tyq | TaaTys | TosTys |
p -’y— "I' I I l 2
1,1 9.9 3,3 4,4 Ty

5,5

2,9y,

or if the radii of the spheres be »,, 7y, 75, 7, 75, We have,

Ty 1.7, Ty 9Ty Ty g Ty T 4T, Tz, 5Ty 5
_zﬂ_uy 41 W1+ <, 20 ./"+ “73 ./3_'_ L&J4+ v,:gy,a. . . . (223)
5 .

From this we can deduce at once the formulse—

Ty

7TL1 +'77'1,20 +'7T.z3+77'.z4. +'77'a,5 \l%

: (224)
o Tun’ 7?1,,2_. Tos® | Tos' | Ta 5
4'/"& - 7'12 + ’7'2“ + + + 7y 2 J
where x denotes any sphere.
Also
7r” 'mg 77'],3 o4 'm,w
+ + + + [
.o oo (225)
___7_” L _|_7r” 2 +?.Ti§ a4 _I_W 5 J|

where = denotes any plane.
Again, taking  and y as coinciding with the plane at infinity, we have, since
776,9=0a

1,1
—_— . /e
0=+ w"‘ + R 011

whence we see that one of the five spheres is imaginary.

218. If any system of spheres, say (1, 2, 3, 4, 5), be given, then the five spheres,
each of which is orthogonal to four of the given system, form a system, say
(6,7, 8, 9, 10), which may be called the ““ orthogonal ” system of the former.

If (x, y) denote any other spheres, the equation
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gives us

Ty Taee Ty Mg Tayg Talo =0;
Ty, Tne 0, 0, 0, 0

Tyo O, w0, 0, 0

7Ty, 3 0’ O’ 773, 8 O’ 0

Ty 0, 0, 0, Ty O

Ty5 0, 0, 0, 0, 75,10

which may be written

Ta,67y,1 +77'fv,7"77'y,2 _I_”"w,s’”y,s +77':v,977'y,4, +77'a'.1o-77'y,5

Ty = g g s T
1,6 2.7 3,8 4,9 5,10

Hence x denoting any sphere, radius 7,

Toa g 0 )

|
L

Ta,107,5 |

5,10 J

Ta,6

4Ty Tos

Te Tor  T3s Ta9 T510

1=

o__TaeTa1 | TorTey | TagTey | TooTay
— gy pm TR T ey T Ty g ooy
1,6 To.1 3,8 4,9

Or again, if x denote any plane,

0=""64 o1y Tes g Teo | Tt ]

T,6  Ton  T38 T49 T310

s

9— Ta,6T2,1 + Ta,1-Ta,9 4+ 2,5 2,3 4 2,97 2,4 + 2,107 w,5
1.6 o1 73,8 4,9 5,10

Also, taking « and y as coinciding with the plane at infinity,

T Tor T8 Tiy9 Ti10

(227)

(228)

(229)

(230)

A particular case would be any five points in space, and the five spheres circum-
scribing the five tetrahedra ; thus by equation (230) we see that the sum of the
squares of the reciprocals of the tangents from each of five points to the spheres

passing through the remaining four is zero.

214. A system of three spheres and their two points of intersection constitute an
important system, which may be called a “semi-orthogonal ” system. Denoting the
three spheres by (1, 2, 3), and their points of intersection by (4, 5), then if (x, )

denote any other spheres, the equation
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becomes
Ty Tl Tags  Tag  Tags  Tay =0;
Ty T 0, 0, 0, 0
Ty 0, Moo 0, 0, 0

Ty, 3 0:

0
Ty, 4s 0, 0, 0’ 0, T4,5
0 0

77% 53 ) 0’ 7T4‘9 59 0

which may be written

Ty 17T Ty 0T, Ty o Ty Ty 5+
Ty = 1 /1+ 2,9 y2_|_ #,3 y3+ 2,4Ty,5 '”'za'"'w (231)

11 a9 3,3 T4,5

Denoting the radii of the spheres by 7, 7, 5, and the distance between their common
points by e, we have—

if « denote any sphere, radius 7,

9Tl T m7
2= 7? + + & |
71_271_ . [ },(232)
z, 2 2 2, 42T 2,
47.x2=.711. + 2 + % — 22 5 I

o2
233
4="01 +'"'¢,2 _|_77'z,32 PRLY LN (235)
X 7y g 2 J
Also, taking x and y as coincident with the plane at infinity, (231) becomes
1.1 1 4
O—;12+,;'22+;33——é§ e e e (234)

Spheres touching one another.—S§§ 215, 216.

215. If the system of spheres (1, 2, 3, 4, 5) touch each other externally, the
equation

MDCCCLXXXVI. 4 F
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becomes

1 1 1 1 1 | =0:

O’ ) ) ) T ) O’
(b Ty 73 7 75

1

7:;) _1: 1: 15 ]9 1

1

N 1; _1’ .l: 1; 1

7°2

1

T 1: 1; _], 1, ]_

7'8

1

;4;’ 1> ]-’ 1’ —17 1

1

= L1 1,1, =

which may be written :
1 1
SS=STg . ... (285)

" 3
Ty
or

1 1 1 1 1 1.1 1 1 1\2
(ot it st = ()

216. If the spheres (1, 2, 3, 4, 5) have a common tangent sphere, which we will
denote by (x), then the equation
H(m ]. 4, 3,4 O\—

2z 1,2,3,4,5/
gives us
L \/7—7:1,”1a \/77_2,; \/773, 3 \/ T4, 49 \/7—7:5,_5 =03
va 1,15 1,1 1,9 71,3 1,40 1,5
‘/772, 92 9,1z 9,9 9,8 79,40 79,5
v 7_7:33: 73,15 73,9 3,35 73,40 3,5
v ;;;’ 4,15 T4,25 T 4,35 Ty, 40 Ty, 5
Vv 5,5 5,1 Ts9 - 53 5,49 5,5

where the positive or negative sign is to be taken with any expression, such as N/ T, 1o
according as the spheres (m, n) have contact with (x) of the same or opposite kind.

Now if we write m,s:]:«/ ﬁ:t,.,ﬁ, in which ¢,, will denote the length of the
common tangent of the two spheres (r, ), “ direct ” if the positive sign is to be taken,
“indirect ” if the negative sign is to be taken ; then we can deduce at once from this
equation the equation of condition, due to Dr. CAsEY,
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0, 1,5 G tS t° | =0, . . . . . (236)
t?, 127 O’ t?, 329 tz, éza tz, 52
t3, 12: ts, 22: 0: t3, 429 63, 52
t4<, 12’ t%, 22’ t4~, 32’ 09 t4«, 52

2 2 2 2
t5,1 ’ t5,2 ’ t5,3 H t5,4 ) 0

which must be satisfied if the spheres all touch the same sphere. Supposing this
condition satisfied, the radius of the tangent sphere is easily found thus. Let

(6,7,8,9, 10) denote the system of spheres orthogonal to the spheres (1, 2, 3, 4, 5),
then by equation (228) we have

W‘”,l 7r~",2+ﬂ,§ 7r‘”,4+ W"”,5 _1 o
- )
Te Tor T8 Tayg 510

hence

1=2{7‘1+—“12~»+—7”3-+“T4“+¢5‘}’ CoeL L (237)

Tu Te To7  Ts38 Ta9 7510

where the radii 7, 7y, &c. are to be taken with the positive or negative sign, according
as the contact is external or internal.

CuAPTER I1I.-—SpaErEs CONNECTED WITH A SYSTEM OF FOUR SPHERES.

In this chapter it is proposed to extend a few of the results arrived at in
Chapter IV., Part I. The formula for the spheres which pass through the points of
intersection of four spheres, and also for the spheres which touch four spheres, will be
seen to be exactly analogous to those proved for circles passing through the points of
intersection of, and touching three given circles. In the case of a tetrahedron there
does not seem to be any sphere analogous to the nine-points circle of a triangle; a
special system of spheres will, however, be mentioned, which have a sphere touching
their tangent spheres, but even here there is no formula, connecting the radius of this
sphere with that of the corresponding sphere circumscribing the tetrahedron formed
by the four spheres, analogous to the formula (20=R), connecting the radius of the
nine-points circle of a triangle with its circumcircle.

Spheres cutting Four Spheres at gien Angles.—§§ 217-219.

217. Let the given spheres be denoted by (1, 2, 3, 4), and let their orthogonal sphere
be denoted by the symbol (5). Let « denote any sphere cutting (1, 2, 3, 4) at the
angles 6, ¢, ¥, x; and let « cut (5) at the angle o.

4 F 2



588

From the equation

21,2, 3,4,5\
H@Lzagg—m

we may deduce

—1, cos 0, cos ¢, cos Y, cosy, COSw
cos 0, —1, coswyy COSw g COSw, O
cos ¢, coswy,, —1, coswys COSwy, O
COS Y, COS wg;, COS w3, —1,  coswg,, 0
cos X, COS @1, COS Wy, COS @y, -1, 0
cos w, 0, 0, 0, 0, —1

whence we have

sinfw | —1, COS @) 4, COS @3, COS®, ,

cos wyq, —1, COS Wy 3, CO8 Wy 4
- COS w3y, COS Wz, —I1, COS g 4
COS Wy, COS Wy COS g —1
= 0, cos 6, cos ¢, cos Y, cos x
cos 4, —1, COS W) 9, COS @3, COS @) 4
cos ¢, coswy,, —I1, COS Wy 3, COS Wy 4
cos Y, COS w3, COS®3, —1, COS g 4
COS X, COS @y, COS@yqy COSw,g —1

Let p denote the radius of the sphere (x), then by the equation

we have

1 1 1 1 1 1
Poow W oww o
cos §, —1, COS W) g COS® 3 COSw® 4, O
cos ¢, ©cos wy;, —1, COS Wy 3, COS Wy, O
COS Y, COS wgy, COSwg, —1, cos wg,, 0
COS X, COS@q, COSwy, COSwys =—1, 0
cosw, O, 0, 0, 0,

MR. R. LACHLAN ON SYSTEMS OF CIRCLES AND SPHERES.

(238)

. . .
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or’
<1+ <}g§_ag> -1, COS Wy 5, COS @3, COS ),
P cos wy 1, —1, COS Wy 3, COS Wy 4
COS W3 1, COS Wy, —1, COS W3 4,
COS Wy, COS @y COS®y; —1
+1, 1 1 1 =0. . . (239)
’ P’ 7y 7’ r,’
1 2 3 4
cos 0, —1, COS W q, COS®;g, COS W,
cos ¢, coswy,, —I1, COS Wy 3, COS Wy 4
CoS Yy, C€OSwg;, COS®g, —I1, COS Wg 4
COSX, COS @), COS®,q COS®,s —I1

We infer, then, that two spheres can be drawn to cut the given spheres at the
angles (0, ¢, ¥, x), or else at angles supplementary to them. If the two spheres cut
(1, 2, 8, 4) at the same angles, they cut the orthogonal sphere at supplementary
angles, and vice versd; and evidently one is the inverse of the other with respect

to the orthogonal sphere.

Denoting their radii by p, p” we have

and

1 1

’

PP

2 cos
2eosw_ o

7

%—}-%,:F.cos 0+G.cos p+H.cos y+K.cosy,. . . . . (240)

where F, G, H, K are independent of (6, ¢, ¥, x).

We see at once, then, that the two spheres will be real, coincident, or imaginary,

according as
g )

is positive, zero, or negative.

But by equation (218) we see that the sign of »;? is opposite to that of

1.e., opposite to the sign of

—_— 1’
COS wy 1,
COoS ws’l,

COSs (U‘_&’ 1

L,
n(l’

COS W), g,
-1,
COS g o,

COS Wy, g,

2,3, 4\
2,3,4)°

COS Wy 3,
-1,

COS Wy, 3,

COS @y 4
COS Wy 4
COS wg 4
-1
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Hence, by equation (238), the two spheres which cut (1, 2, 3, 4) at the angles
(6, ¢, ¥, x) will be real, coincident, or imaginary, according as the expression

—1, cosé, cos ¢, cos s, cos [
cos 0, —1, COS 5, COS @3 COS ),
cos ¢, coswy,, —I1, COS Wy 3, COS Wy,
COs P, COSwg,, COSwg, —I1, COS W3 4
COSY, COSw,1, COS@,o COSw,s —1

is positive, zero, or negative ; ¢.e., according as

%, 1,2,3,4
o H(a}, 1,2 3, 4>
is positive, zero, or negative.
218. It is evident that eight pairs of spheres can be drawn to cut the four given
spheres at angles whose cosines are 4k, 4Ky, d-x3, +k, If we denote the radii of
these pairs by p, p'1; po p'e; &ec., we have by equation (240)

1. 1
;+;’= +F.+Gkg+H.k; =Kok,

Hence we have the relation

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 — .

ot oot ater ot e ater e T B
1, —1, 1, 1, 1,  —1, 1, 1

1 1, =1, 1, 1, 1, -1, 1

1, 1, 1, =1, 1, 1, 1, =1

1, 1, 1, 1, =1, =1, =1, —I

219. In the case of a tetrahedron formed by four planes, the orthogonal sphere
becomes the plane at infinity ; and so the pair of spheres which cut the faces at angles
(0pyx) coincide. Thus eight spheres can be drawn cutting the faces of a tetrahedron
at angles equal or supplemental to (6, ¢, ¥, x) ; and their radii are connected by the set
of equations

1 1 1 1 1 1 1 1 | =0.. . (242)
pr Py Py ps ps i pr Ps
1, —1, 1, 1, 1, -1, 1, 1|
1, 1, —1, 1, 1, 1, —1, 1
’ , 1, 1, —1, 1, 1, 1, —1
1,1, 1. 1, —1, =—1, —1, —1 |
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A particﬁlar case is that of the eight tangent spheres, 7.e., one inscribed, four
escribed to one face, three escribed to two faces, of a tetrahedron.
The Spheres Circumscribing the Tetrahedron Formed by Four Spheres.—§§ 220, 221.

© 220. Let the four given spheres be denoted by (1, 2, 3, 4), their orthogonal sphere
by the symbol (5). It is evident that eight pairs of spheres can be drawn. ILet
P, Q, R, S be the four points in which they intersect, which lie within the tetrahedron
formed by the centre of the spheres. Let « denote the sphere circumscribing PQRS.

We have by equation (220),
2,2,8, 4\ (5,84, 1\ /5,41,2\ (1,23
H(x, 2,3, 4>—H(x, 3, 4, 1>—H<x, 4,1, 2>_H<{ﬁ, 1,2, 3>—0'
Hence, by a theorem of determinants,
z, 1,2, 3\] ® 1,2 x.1,2,3,4j
{3 ) =-n(y (i)

.
&234 3, 5 1,2,3, 4\ |
‘{ < >} < >XH<w,1,2,3,4>J

But since
2,1,2,3, 4,6\
H<m, 1,2, 3,4, 5)_0’
we have
0,1,2,3 4 5 1,2,3, 4\
T, H< 0 1,2,3, 4)"’ <x 1,23, 4)‘0’
or

21,234\ 1,2, 3, 4 1,9,3 4 1,23 4
H<x, 1,23, 4>'—"""5{H(1 2,3, 4>_H<m, 9,3, 4.> H<1, z, 3, 4>

Also since
/2, 1,2, 3,4, 5\
H(x, 1,25, 4, 5)"0’
we have
21,2,8,4\_ , (1,234
175’5.1'[(%1,2,3’ 4)_771.,5.11(1,2’3) 4).. C L (249)

But by equation (218),

1,2,3,4 .
H<1, 2,3, 4_>=288775,5'{V(1; 2, 8, 4)}%

and by equation (217),

1,2,3 .
n(l) 2} 3>=—288.{V(1, 2,3, 8)1%;
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we deduce then from (243), that

M55 —Tso__ V(P23 4)+V(Q,3,4,1)+V(R, 4,1, 2)+V(5,1,2, a)
5o V(1, 2,3, 4)

i.e., denoting the radius of the sphere (P, Q, R, S) by p, and its angle of intersection
with (5) by o,

peose _ V(1,2,3,4) (245)
. VL2V, 2,304 V(Q, 5,4 D1 V(R 41,2+ V(S, L2y

a2

If P be without the tetrahedron formed by the centres of the spheres (1, 2, 3, 4)
the sign of V(P, 2, 8, 4) must be changed, and thus the powers of the spheres with
respect to the sphere orthogonal to (1, 2, 3, 4) can be written down.

Also we can easily deduce from (244), the equation

—tan® o, Vi, Viee Vs Vi | =% - (246)
\/E’ H1,10 1,25 1,35 1,4
V bz Mo, 95 2,15 2,9 2,35 H2,4
Vi l’«s,s’ 3,15 3,25 3,3 3,4
4 @ Mg, 15 g2 4,35 g4

. . . 1, 2, 3,

where p, 1, py,0 &c. are the minors of m, 74 &c. in the determinant II<1 5 ; i)
Thus p,,=—288{V(P, 2, 3, 4)}?, and thus the sign of 4/, is positive or negative
according as P is within or without the tetrahedron formed by the centres of the
spheres (1, 2, 3, 4).

221. The system of spheres (1, 2, 8, 4, ) is orthogonal to the system (P, Q, R, S, 5),
and we get some interesting theorems by aid of § 213.

Thus, by equation (230), we have

1 1 1 1 1

Tp,1 TQe TR, T84 Tas

=O........(247)

And if «’ denote the sphere passing through P’, Q’, R’, §’, the inverse points of
P, Q, R, S with respect to (5), we have
1 1 1 1 1

=0.

Tprq T, e TR,3 s, 4 a5
But since @, «” are inverse with respect to (5),

1 1_2.

2
Ta,5  Ta,s T
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hence

_1v+__1__+.1,.+_1_+_1,_+_¢1_+i+ 1 +i=0;. .o (248)

a1 e, TQe T, Trs Tr,3 T84 Tg,e i

or the sum of the reciprocals of the squares of the tangents from the points of
intersection of four spheres to the spheres is equal to the reciprocal of the square of
the radius of the sphere which cuts them orthogonally.

Again, from equation (228),

KES Tey 4 Teg g Tae

T 9
e -_—_—1 ;
7"P,1+'7TQ,2+7TR,3 Tsa a4
or if (z) cut (1, 2, 3, 4) at angles ¢,, ¢,, ¢s, ¢y, we have
1+1 See w=“71cos ¢1+21 5 COS ¢2+ 27y COS ¢;+27 cos ¢4 L. (249)
r WP,I TQ,9 TR,3 Ty, 4

The Spheres which Touch Four given Spheres.—§§ 222, 223.

222. Let the given spheres be denoted by (1, 2, 3, 4), their orthogonal sphere
by (5). Then x denoting any sphere which touches them, we shall have by the

equation
(o1 2545\ _
N\, 1,2,8,4,5)
: /T =0 . . 250
sinw, WV, Ay Vmgg VT ’ (250)
\/77'1,1: T, 1 1,9 71,3 1,4
v/ 9,9 o, 15 79,9 79,3 9, 4
/
V g, 3, 3,15 3,9 73,35 73,4
4 Ty, 45 T4, 15 4,9 Ty, 85 T4, 4,

by taking the expression v/, ,, /7, &c., with different signs, we obtain the
eight values of sin® w corresponding to the eight pairs of tangent spheres,
The radii are given at once by the formula

2,1,2,3,4,5\
H<0, 1,2, 3, 4, 5)" 0.

Thus, if p be the radius of the sphere touching (1, 2, 8, 4) externally, and » be
the angle at which it cuts the orthogonal sphere, we have
MDCCCLXXXVT. 4 ¢
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l Cos @ 1 1 1 1 =0 .
p r o ry’ 7y 7
1, -1, COS W9, COS W3 COS W,
1, COS Wy, 1, -1, COS Wy 3, COS Wy 4
1, COS w31, COS W3 o, —1, coswg,
1, COS @y 1, COS Wyg, COS Wy 3, —1

228. There is no analogous theorem, in general, to FEUERBACH'S theorem. In
the case, however, when the given spheres (1, 2, 3, 4) cut at angles such that

COS ¥,y =COS W, 3==COS W] ;=0 ; COS Wy ,=COS W, 3==COS W3 ;=3

; it may be shown that

the two spheres touching the given spheres, all externally, and the eight spheres
touching three externally, or three internally, may be divided into two groups of five,

each sphere of either group touching a certain other sphere.

Thus, let the tangent spheres be denoted by (a, b, ¢, d, €), let z denote the sphere
which touches them. Suppose z touches () internally, and (b, ¢, d, ¢) externally.

From the equation
z 2 =
<~, ]., ,3, 4, 0) :,

z, a,b, ¢ d e
we deduce

A 08 0,4 B cos w1 +C €08 0.+ D cos 0, s+ B cos w, 4+ F cos w, ;=0 ;

where
A= 2cos w,;— €OS wj;— COS®,;— COS Wy ;— COS W, s,
B=— cos o, ;42 cos wj;— €08 w,;—: COS wz5— COS w5,
C=— cosw,;— €08 w;;+2Co8w,;— COSwyz— COS Wy,s,
D=— cosw,;— coswy;— €0Sw,;+2C0Swz;— COS W,
E=— cosw,;— coswy;— €08 w,;— €08 wy5+2cos w,y,
F=—6

By taking for «, 1, 2, 3, 4, 5 in succession, we can find cos w;,), CO8S w g, COS .,
COS @, 4, COS w5, and then substituting in the equation obtained by putting z for x, we

find the required condition.
By equation (250) we find at once,

3(a—1)?

3(a+1) .
3224+28—1"

CoS® W, =5y ua 15 COST @y s=
Su —

and
(ea—1)¥B+1)°=

4 —1)(B—

cos? 0, ;=c08% wy ;=C08” W, ;= (B+1) G+ 28—1)
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Taking cos @, ;, cos w5 cos ,; with the same sign, we have
A =2 cos w, ;— cos w ;—3 cos w, 5,

B=2 cos w; ;— cos o, ;—3 cos w,;,

C=D=E=— cos w, ;—cos vy ;.

Hence
A cos w,;=B—3aC,
A cos w, ;=A cos w, ;7=A cos 0, ,=—aB+(1—28)C,
A cos o, ;=—6,
and

—A+B cos w;,,43C cos w, .+ F cos ; ,=0.

Substituting, we must have

— A?4 B?—6aBCH+3C(1—28)+36=0,
or
124 (cos w; ;=—cos w; ,)(Cos wy .4 cos w; 3~ 6 cos wy, )
+2a(cos wy .08 w5, 5)(2 cos vy ;— cos vy, ,—3 cos w;,,)

—(2B—1)(cos w4+ cos w;,,)*=0.

The coefficient of cos wy ,=(a=1) cos w; ;4 (x—1) cos w; ., and choosing the signs of
COS wy,4, COS wj,3, SO as to make this vanish, we can easily show that this condition is
satisfied.

(«+1)\/3
Thus if 7, 7/; denote the spheres for which cos o=+ ViR T =T’ an

1v3 ’
\_7()2__’_2.'8_1, and if (r3, 75) (1 7y (m35, 75)

. ’
d if 7, 7,
denote the spheres for which cos w=F
denote the other spheres, we see that the groups
’ ’ ’ ’ 7
(71’ Toy Tgy Ty 75) (T LTe T3 Ty 75)
’ 4 4 4 4
(Tl, 7'2, 73, 74, 7'5) (T 1 72, 73, 74, 75)

have each a common tangent-sphere, which touches 7 o 7', in the opposite sense to
Ty, Ty &C.

>
[}
o
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CHAPTER 1V.-- POWER-COORDINATES.
Definition—-$§ 224-227.

224. Since a sphere, plane, or point is completely determinate when its powers are
known with respect to any five spheres not having a common orthogonal sphere, we
may define the coordinates of a point (sphere or plane), referred to such a system of
spheres, as any multiples, the same or different, of the powers of the point with
respect to them.

Thus if (xyzwv) be the coordinates of any point, whose Cartesian coordinates are

(2By), we shall have

@ proportional to (a—a)*+(B—0)*+(y—c)*—1,

where (abc) is the centre of the sphere of reference, » the radius. Thus (zyzwv)
are quadric functions of a particular form of the Cartesian coordinates of the centres
of the spheres of reference.

We shall find it convenient to restrict the use of (z, v, 2, w, v) to denote the
coordinates of a point; the coordinates of a sphere will be denoted by (&, 9, {, o, =);
and the coordinates of a plane by (\, g, v, p, o). v

225. Let us denote the system of reference by (1, 2, 3, 4, 5); then if (xyzwv) be
the coordinates of any point P, we see that, 8 denoting as usual the plane at infinity,
so that m, p=1, then, since 7 =0, the coordinates of P must satisfy a homogeneous

guadric relation
P, 1,2 34,5\
H<P, 1,23 4, 5>“ 0,

and a non-homogeneous linear relation

Let us suppose the coordinates of P defined by the equations

w=ki.mp, Yy=kywp o 2=kgmp s, w=kymp,, v=Ekymp;.

Then the quadric relation which (2yzwv) must satisfy is
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2w v =0. . . . . (252
€ i

72 b Ty T TLe Tis
Y

) To, 1 Mo, T3  To4 Tos

F4
?3.- 3,15 T3, 73,35 Tgd4s Tg5

w
E’ T41s Ta9  T4,3  Tago Tys
v
E’ T5,1s T T T4 Thp

This is called the equation of the absolute : we will denote it by

Y, Y, 2, W, V)= (g1, Qg Wyyg0 Apas - - ) (@, Yy 2, W, 0)2=0, . (253)
where
*HGﬂAﬁ> <Lag3
1 2,8,4,5) “\as45)
11 @%%Lzaawab2@@HC,ﬁAﬁ> ¢
1,2 3,4, 5 1,2,3,4,5

and then the linear relation which (xyzwv) must satisfy, may be expressed thus

>
kl +cha‘f’+zc it —+k58;” 2. . . . . . (254)

226. If (€ 7, {, o, =) be the coordinates of any sphere, S, we see that, since 7 ,=1,
‘the coordinates of S must satisfy a non-homogeneous linear relation

6,1,2, 3, 4,5\
H(s 1,234, 5> 0
which may be written ’ ‘

1a?+4&‘h+@ W, ‘ﬁ+@a¢ —2.. . . . . . (255)

227. Again, if L denote any plane whose coordinates are (\, p, v, p, o), since =0,
.= —2, we see that the coordinates of L must satisfy a linear homogeneous equation
and a non-homogeneous quadric relation, viz.,

L. 1,23 4,5\
I%aLzagg”m
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which may be written

oy oy d
1%f+k ¢+@ L, ¢+ é? L. ... (256)

and

L 1,2, ,4,5__
HQA,,Aﬁ>(’

which may be written

VAT a‘F+ Lapgltot=1e,

or
Y\ p, v, p,0)=1.. . . . . . . . . (257)

The Sphere.—§§ 228-231.

228. Let P be any point on the sphere S whose coordinates are (éplww), then since

mp =0, and
01,2,3,4,5)
H@L,&%Q_Q

we see that the equation of the sphere is

a‘éj otgty+ et ut P o=o;

and hence the general equation of the first degree,
owc+by+cz—|—dw+ev=0,
will, in general, represent a sphere, whose coordinates are given by

o Oy Oy 3\# A

on o] —2 :
O _on 0t _fw_Oo_ C .. (258)

a b ¢ d ¢ aky+ by + chy+dk,

by equation (255).
229. Given any two spheres (énlww) (€/{'e’w’), their power = is, since

given by
/ /a /a /8 /
—or=¢ E—)‘\k—i—?] i+§ ‘ir-l—a) %—l—w QZ;’_ e e (259)
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In particular the radius of the sphere (&plww) will be given by
2r=W&n Lo, m). . . . o o0 o . (260)
230. Hence the’ radius of the sphere -

ax+by+cz+dw-+-ev=0,

is given by
auyy Qe Org O Oug @ | =0, . . . . (261)
Ug15  CGogs Ogg  Oog Ogy D
Qg5 O U3 g4, g5 C
Pg15 Myg90 Qg3 Qg4 Ags d
A5,15  Cby05 Qg Qg Uy €
a, b, c, d, e, U
where

- u=2r%aky+ bkt cks+dk,+-eky)?,

We shall find it convenient to denote the bordered Hessian of 4 by ¥'; and suppose
the coefficients so determined that we may express equation (261) thus—-

u=Wa, b e dye) . . . . . . . . . (262)
231. The power of the sphere (éylww) with respect to the sphere

ax—+by+cz+ dw+ev=0,
is clearly given by

__ af+bmtctdotes
T aky + by + chy+ dley ey’

and the power of the two spheres
ax +by +cz +dw +ev =0,
dx4-by+cz24dwtev=0,

. (269)

is clearly given by
a\If ov . BY. 0T A
b/ Vdiell dl
_ R AR T .
= (e, + bty + ck3 F dloy+ elog) @'y + Vg + oy & 'l + €'l5)

And so the angle of intersection of the spheres will be given by

A . A
Tt e ae_ L. (264)

*VY(a, b, ¢, d, )V (a, V', ¢, ', ¢)

cos ¢ =—%
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The Plane—-§§ 232-235.

232. If (\uvpo) be any plane L, (xyzwv) any point P on it, we have at once, since

But by (256)

hence the equation
, ax—+by+cz+dw-ev=0,
will represent a plane when

by gty db4-ek;=0. . . . . . . . (265)
And if this condition be satisfied, we have to determine its coordinates,

oy Op O O I
OL __ O __ov ap _ 0o __ 2 2
a _T_—o__j__‘_\/\lf(a, b, ¢, d, e) . (266)

where ¥(a, b, ¢, d, e) is defined by equation (262).
233. The power of the sphere (&plww) and the plane

_ ax—+by+cz+dwtev=0
is given by
0 0
—am=g bt G oS ol

therefore

_ub+bptcf+do+ten ~ .
= Wb dd Coe e (2067)

234. The angle of intersection of the planes

ax by +cz +dw +ev =0,
&' x40"y+ 24+ d'w+ev=0,
will be given by
LY SN ) ) &
. 42 a——-l'bg'l' 50 +d§67+ ‘DA
2/ W(a, b, ¢, d, ).V (d, 1, c' d’ e’)

cos p =—1 (268)
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235. The coordinates of the plane at infinity are clearly &y, %, ks, &y, k5, and so the
equation of the plane at infinity is

«p+7 «1»+ ast»+wa«:»+ 8«!»_0

The Point.—S§ 236-238.
236. The power of the point (xyzwwv) with respect to the surface

ax+by—+cz+ dw—+ ev=0,
will be equal to
ax~+by+cz +dw+ev
aky + by + ckey + dk,+ ek

if the surface is a sphere, and will be equal to

ax+ by + cz + dw+ev
VY@, b doe) ’

if the surface is a plane.
237. The power of the two points (xyzwv), (xy'zwv’) will be given by

@%JF w"‘ af"' a:i"' a¢

—27r=x
Hence, since
i,b(x, Y, 2, W, ,U)=‘IJ('%.,; y/, Z/, w’, ’U,)=0,

the distance 8 between the two points will be given by
2¥=y{x—a, y—y, z—2, w—w,v—0v}. . . . . . (269)
238. Let P, Q, R, S be any four points, then by equation (216) we have for the

volume of the tetrahedron formed by them,

6,P,Q RS/’

6,P,QR,S 1,2,3.4,5\_ 6, P, Q R, 8\?
H<0,P, QR S>XH< 2,34, 5)‘{“(1, 2,3, 4,5)}'
If then the coordinates of P, Q, R, S referred to (1, 2, 3, 4, 5) be (zy,z,w,))

(41 20wy, ) (XY 325w5vs 2,y 240,0,), We see that we shall have
MDCCCLXXXVI. 4 H

288.{V(P, Q, R, S)}2=n<6’ P, QR S> .
and by § 204,
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VIP,Q R, S)=p | x, wy, 2z, w, v |; . . . « . . . (270)
Loy Yo %y Wy Uy
L, Ys 23 W Vg
Lyy Yo 2 Wy, Uy

kl’ kz’ ka, kﬁk’ ka

1,2,8,4,5
where 288p%l%2%32k4%52.n< o 5):1.

Coordinate Systems of Reference.—S§§ 239, 240.

239. The most convenient system of reference is five spheres which are mutually
orthotomic : this may be called the orthogonal system. If r, r,, 74, 7, 75 are the
radii of five such spheres, it is simplest to take %, k,, ks, k,, k;, the coordinates of the
plane at infinity, as inversely proportional to them. In this case we shall have, by
§ 212,

2.9(x, ¥, 2, w, V)=~ P+ 22 Fw0? (271)
2 ¥(x, y, 2, w, v) ="+ y*+ 22+ w+0? S

Thus the angle between the spheres
ax +by +cz +dw +ev =0,
&' z+by+cz+dwtev=0,
will be given by
_ ad +bb +cc + dd’ + ee’
008 p = — V(@ P+ P+ AP+ P+ ARy

240. Tt is, however, very often convenient to take as the system of reference three
spheres cutting orthogonally, and their two points of intersection. And then if
71, Ty, 73 be the radii of the spheres, € the distance between their points of intersec-
tion, it is simplest to take &, ky, ks, k,, k;, the coordinates of the plane at infinity, as
inversely proportional to 7, 7y, 75, € €: so that we shall have by § 214,

2‘#(96’ Y, 2, W, ?J)Ew2+y9+z2_4v,w .
2\1’(:)0, Y, 2, W, v)a_:oc2+y2+z2__ v 5o e o ( Vi )

so that the angle between the spheres

ax +by +cz +dw +ev =0,
Ay 4zt dwtev=0,

will be given by
‘ aw’ + bb' + ¢’ — L(ed' + ¢'d)

T (@R +E—de) (e + b2+ —d'd)

cos ¢ =
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CHAPTER V.—GENERAL EqQUATION OF THE SECOND DEGREE IN PowER-COORDINATES.
Nature of the Surface.—§§ 241, 242,

241. The most general equation of the second degree in power-coordinates may be
written
(@, Y, 2, w, V)=o) B0 Yty s Pty 0o 0
+ 20 5 2y 420 3 w2420 , 2WH 20 5 2V
420, o Y2420, 4 yw+2a, s YV
+2a5 4 2w+ 2a5 5 20420, ;oW =0 ;

and since the coordinates of any point must satisfy the equation of the absolute,
which is also of the second degree, we see that this equation contains only 14
constants.

Now (X, Y, Z) denoting Cartesian coordinates of a point, we can express the power-
coordinates (wyzwv) of the point as linear functions of X*+Y*+Z7% X, Y, Z, 1; and
if we substitute for (xyzwv), the equation becomes of the form

(XY 24 U, (X4 Y24 20) + U,y=0,

where U, is of the first degree, U, of the second degree in (X, Y, Z); this equation
has 14 constants, and represents a surface having the circle at infinity as a nodal
curve, and is usually called a cyclide. It thus appears that qS_-O is a form to which
the equation of every cyclide can be reduced.

242. It is also evident that, since the equation of every plane is satisfied by the
coordinates of the plane at infinity, the surface ¢=0 will represent a cubic surface
and the plane at infinity, if the equation ¢=0 be satisfied by the coordinates of the
plane at infinity. Such surfaces have been called cubic cyclides ; they intersect the
plane at infinity in the imaginary circle, and also a straight line.

Equation of Tangent at any Point.—§§ 243-247.

243. If (£ 9 { © =) be the coordinates of any sphere touching the cyclide ¢ at the
point (x'yz’w'v’), we must have

oY oy oy oy oy
35 o % . 0w - Ser @)
OF 0 o0 0b 0y 0 By 0 By -
8.9, H»a, P, + o 8’+kaz/ 5 +law 8’+ W

4 H 2



604 MR. R. LACHLAN ON SYSTEMS OF CIRCLES AND SPHERES.

And thus the equation of any tangent sphere is of the form,
o oy N\ (9% 0% L AV
(354050 ot (2410 )yt (4 5E ot (G245 ot (54255 ) o=0
Hence the equation of the tangent plane at the point (xy’z'w'v’) is

0 0
(bt g 415545 w5 ygt e DY ulh 400

0 0 0
=(gE g+, e A Yoyt e N )

244. The sphere given by the equation
(et +esy ,+wa o )b b)=0,

will clearly touch the cyclide at the point («”y"2"w"y") if

aqS o oy 0P 8\# ¢ .0y Op a«[r
o' kaa:’ 8 ’+k8 oY T o7 _ ow +k8w _ o + o'

06, 00 % 0 0b 0y 0 0% 0oy’
o By SRl A A VI VR W AN

in which case & must satisfy the quintic
H(¢+k‘/’)=oz Co e e (279)

where H(u) denotes the Hessian of wu.
We infer, then, that there are in general five systems of bitangent spheres of a

cyclide ; i.e., of the whole number of tangent spheres at any point of the surface five
touch the surface elsewhere. Moreover it is evident that the system of bitangent spheres
corresponding to a particular root of (275) all cut a certain fixed sphere orthogonally,
the coordinates of this sphere being proportionaJ to the minors of the constituents of
any row in the determinant H(¢-+kyp).

245, It the coordinates of a bitangent sphere satisfy the absolute, v.e., if the radius
of the sphere be indefinitely small, the sphere may be considered as a focus. Tt is
evident that the foci belonging to any system of bitangents will form a curve of the
second degree on the corresponding orthogonal sphere. Such a curve will be a spheri-
quadric.

246. If the coordinates of a bitangent sphere satisfy the condition, for a plane,
the corresponding equation will represent a double tangent plane ; and its coordinates



MR. R. LACHLAN ON SYSTEMS OF CIRCLES AND SPHERES. 605

must satisfy an equation of the second degree, and thus we shall have a double tangent
cone corresponding to each system of bitangent spheres, the vertex of the cone being
the centre of the sphere which cuts the particular system of bitangents orthogonally.

247. Again, it is clear that if by any transformation the equation of the surface
becomes ®, and the equation of the absolute W, then the same value of % which
satisfies H(¢+ky)=0 must also satisfy H(®+%¥)=0; and hence the coefficients of
the powers of % in the equation H(¢+%y)=0 are invariants.

Equation of Normal at any Point.—S§§ 248-250.

248. Let (énl{ww®) be the coordinates of any sphere which cuts the surface
$(xy 2 wv)=0 orthogonally at the point (x'y2‘w'v’), we must have

0 0 0, 9, 9\ B _
<§5.-;'+’78_g/+E&""“’aw'*‘“‘avl)(‘f"‘—'k‘l’)—o: coe .. (276)

for all values of %. ’
It follows that if (A pv p o) be any plane containing the normal to the cyclide at the

N4

point, (x"y'7wv’), we must have

Mt oot =0,

N a‘j;+ o,
R s

249. If we take as our system of reference an ofthogona,l system of spheres, radii
(71, 795 3, 74> 75), then, by forming equations to planes containing the normal at (x"y'2'w'v")
and passing through the centres of the spheres of reference, we easily obtain for the
equations of the normal, ‘

x Y 2z w0 =0. . . . . . (2"7)
b Op % I 0P
ox” 0y’ 0 ow'’ o
«, v, #, w, v
i1 1 1 1
A N O 75

250. Again, from (277), we see that if a sphere cut the cyclide normally at the
point («y’Zzw'v'), we must have

op , 0 b, 0P
8&+J 42 +w* 40 - =0,
W E)«]r a\p
’%g ' ?/é’" +w F =0

If then (¢7{w =) be chosen, so that
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o a¢ op 0op 0
af 17 aé’ aco @E
N Oy oy oy oy
G m o o do
then the sphere (é7{ww) will cut the cyclide orthogonally at every point of its

curve of intersection.
We see at once that u must satisfy the equation

H(¢p~+pp)=

and thus there are five such spheres; and the coordinates of the sphere which
corresponds to a particular value of pu are proportional to the minors of the con-
stituents of any row in the determinant H(¢-+puy).

These spheres are evidently the same as those which were mentioned in § 244, as
being orthogonal to the five systems of bitangent spheres. We can easily prove by a
similar process to that in § 81, that any two of these spheres cut orthogonally. They

may be called the principal spheres of the surface,

= —p say,

The Principal Spheres.—§§ 251, 252.

251. By § 244, we see that at every point on the surface of a cyclide can be drawn a
tangent sphere cutting one of the principal spheres orthogonally,and touching the surface
elsewhere ; and hence it follows that the surface must be its own inverse with respect
to each principal sphere. Hence these species of surfaces have been called by
Mourarp anallagmatic surfaces, and the principal spheres have been called by Casey
the spheres of inversion.

We have seen that the principal spheres cut the cyclide orthogonally, and it is
evident that at points along the curve of section the corresponding bitangent sphere
will not touch the cyclide elsewhere, but the curve of section will be a line of
curvature on the cyclide.

252. If a cyclide have a node, then, by the principle of inversion, this node must
lie on each principal sphere; and thus in this case there can be but three principal
spheres, and the node will be one of their points of intersection.

If a cyclide have two nodes, they must be the two points of intersection of the three
principal spheres, and any other two spheres forming with these an orthogonal system
may be regarded as principal spheres ; this case corresponding to that of a quadric of
revolution, Similarly if the cyclide have four nodes they occur in pairs, and lie on the
only principal sphere ; but if’ we denote the nodes by P, P’, Q, Q'; and the principal
sphere by S; then any pair of spheres orthogonal to S and passing through P, P/,
which with any pair orthogonal to S and passing through Q, Q’, make up an orthogonal
system, may be considered as principal spheres.

But if a cyclide have three nodes, then there are only three principal spheres.

There are also cyclides with only two, and with only one principal sphere.
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Reduction of the General Equation to its Sumplest Form.—§§ 253-255.

253. We have seen that the number of principal spheres is the same as the number
of roots of the discriminating quintic H(¢+4%y)=0. Thus in general there are five
principal spheres, and we have seen that these cut orthogonally, and it is clear that if
we take these spheres as our system of reference, we can express the equation of the
cyclide in the form*

ax®+ by 22+ du+4-ev®=0;
and we might expect, perhaps, that this equation would still be the simplest form,
when two or more roots of the equation H(¢-+ky)==0 are equal. But five orthogonal
spheres cannot be all real, one must be imaginary; and we shall find that if one of the
principal spheres corresponding to the unequal roots is imaginary, then this form is the
simplest form of the equation; but if all the principal spheres corresponding to the
unequal roots are real it is not the simplest form.

254. Let us suppose that two of the roots of H=0 are equal ; then, taking for our
system of reference the three principal spheres (z, ¥, 2), say corresponding to the unequal
roots, and any two other spheres (w, v) forming with them an orthogonal system, we
can at once reduce the equation of the surface to the form

ax®+ by + P+ duwP+ ev’+ 2nvw=0 ;
and the discrirﬁinating quintic 1s
H=(a+k)(0+k)(c+k) {(d+ k) (e+E)—n*} =0,

which can only have equal roots provided d=e, n=0; t.e., supposing n is real. Thus,
supposing one of the three spheres (, , z) to be imaginary, so that (w, v) must be real,
the equation can be reduced to the form

ax®+ by -2’ +dw?4-dv?*=0,
or since the equation of the absolute is
4y 42w+ 0*=0,
the equation of the cyclide can be put in the form
axt+by?+c2*=0;

and we see that each of the points common to (, ¥, 2) is a node ; thus the surface has
two nodes ; and, moreover, any two spheres which with (z, y, 2) make up an orthogonal
system may be taken as principal spheres.

Similarly, if the sphere (x) be imaginary, and the discriminating quintic H=0 has
two pairs of equal roots, the equation can be reduced to the form

ax® 4+-b(y*+22) + d(w*+4v%)=0;

* [The equation of a cyclide was first given in this form by Casmy (1871) (‘ Phil. Trans.,” vol. 161,
p. 600).—October, 1886.]
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and we see that each of the points x=y=2=0, and x=y=w=0, are nodes; this

surface is therefore quadrinodal.

Let us now suppose that each of the spheres (x, 7, z) is real, so that the coefficient n
must be imaginary. It is simplest to take for system of reference the three principal
spheres (%, ¥, z) and their two points of intersection (w, v), so that the equation of the

absolute is
22 =4dwo.
The equation H(¢—+kfy)=0 becomes now
(a+k)(b+k)(c+ k) {de—(2k—n)*} =0,

which has equal roots if either d or e=0, so that the equation may be reduced to the
form

ax® +by*+ e+ duw?~+ 2nuwv=0;
or by means of the absolute to the form

ax®+by*+ c2*+ du?=0.

The surface represented by this equation has only three principal spheres and it has

one node, viz., w=0.
Similarly, if the discriminating quintic have two pairs of equal roots, and the sphere

x correspond to the unequal root, we can show that x being real, the equation can be
reduced to the form

ax®+ by 4+ b2+ du?=0 ;
which represents a surface having three nodes, viz., the point (w) and the points
common to the spheres (x, u, ') ; u, v’ being such that they form with (x, ¥, z) an

orthogonal system.
255. Let us now suppose that three of the roots of the quintic H(p+4Ay)=0 are

equal. Taking for spheres of reference («, ) corresponding to the remaining roots, and
(2, w, v) any other spheres forming with (, ) an orthogonal system, then the equation
of the surface must take the form

a4+ by + 2+ dw® -+ ev* + 2fuwv + 2920+ 2hew =0,
and the equation of the absolute the form
P+ PP+ w40*=0;
so that the discriminating quintic becomes

(k+a)k+b) | k4c, h g }
by, k+d, f
9, i ke {

|
o
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This can only have equal roots if the coeflicients %, ¢, f are real, and then we

must have
h=f=g=0, c=d=e.

In this case one of the two spheres (x, ¥) must be imaginary, and so the equation
reduces to

ax® +by*+c(2?+ w40 =0,

which clearly represents two spheres.
Similarly, if the quintic H=0 has four equal roots, and « be imaginary, the equation
will reduce to

ax®+ by*4- b2+ bw?+4br*=0,

which represents the imaginary sphere x=0.

Let us now suppose the spheres (z, y) to be real, then let us take z any sphere
cutting them orthogonally, and let (w, v) be the two points of intersection of (x, ¥, 2) :
so that the equation of the absolute is

Pyt =4dwo,

and the discriminating quintic H becomes

(@+k)O+E) | Ekte, b g9 =0;
h, d, f—2k
9,  f—2h, e

which can only have equal roots provided that
e=g=0, f=—2c;
and then the equation takes the form
ax®+ by e+ dw?+ 2hzw — dcwv=0.

By taking, instead of z=0, the sphere z— ¢

97, w=0, this equation may clearly be

reduced to the form
ax®+by*+2hzw=0.

The surface represented by this equation has the point w=0 for a binode: if a or b
is zero, the node is a unode.

Again, if the equation H(¢ky)=0 has four equal roots and the sphere corresponding
to the remaining root is real : let us take this sphere as x=0, and let us take for our
system of reference any two spheres (y, z) and the two points (w, v) in which the
spheres («, ¥, 2) intersect, so that the system is semi-orthogonal : then the equation of
the surface must be of the form

ax? by + e+ dw +ev® + 2fsw 4 29wy 4+ 2hyz 4 2lyv + 2mazv 4+ 2nuw=0 ;
MDCCCLXXXVI. 41
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and since the absolute is of the form
oyt = 4w,
the discriminating quintic becomes

(k+a) | &40, A, 9, l =0.
h,  k+c, 7/ m
9, y2 d, n—2k
A m, n—2k, e

This can only have four equal roots if

e=l=m=0, 2b=2c=—n.
Thus the equation can be reduced to the form

ax®+by?+ b2+ dw®~+ 2fwz+ 2qwy + 2hyz— 4bwv=0.

This may also be written
ax®+ dw*+ 2fwz+2gwy + 2hyz=0 ;

and by suitably choosing for spheres of reference (y-+ Mw, 2+ uw) instead of (y, 2) this
equation can evidently be reduced to the form

ax?~+2hyz+ dw*=0.

The point w=0 is a node on the surface : it is in general a cnic-node; but if a=0

it is a binode, and if h=0 it is a unode.
Thus there are four distinet forms of cyclides : their equations can be reduced to

one of the four forms
(A)) ax?~+by? + 2+ dw 4 ev’=0;
the absolute being
P+ 0?=0.

There are five principal spheres: if d=e there are two nodes, and if b=¢, d=e¢,

there are four nodes.
(B.) ax*+ by? +c2*+dw*=0,

the absolute being
2 F P+ 2= dww.

This is the general inverse of a quadric surface: there are three principal spheres
and one cnic-node. If b=c there are three cnic-nodes, this is the inverse of a

quadric of revolution,
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(C) ax®+by* 4 2hwz =0,
the absolute being
Byt 42 = dw.

This surface has two principal spheres and a binode (w=0). If a=b there will be
two other nodes.
(D.) a4 2hyz+du*=0,
the absolute being
4y 2= dwo.

This surface has only one principal sphere and a c¢nic-node.  Also, since the general
equation represents a cubic cyclide, when it is satisfied by the coordinates of the plane
at infinity, it follows that the equation of a cubic cyclide can always be reduced to one
of the four forms given above.

CuAaPTER VI.—CrasstricATiON oF CYCLIDES.

Cyclides have been classified by DarBoux and CASEY according to the nature of
the focal quadrics. We shall find it more convenient here to discuss the different
forms of cyclides in order, according to the number of different roots which the
discriminating quintic has. We have seen that there are four distinct forms to which
the equation of a cyclide may be reduced; and it is proposed to discuss briefly the
different species represented by similar equations, and a few of their properties.

A. The General Cyclide.—§§ 256—264.

256. The equation of the surface is of the form
ax®+by*+cP+ dw*+ev®=0,
the equation of the absolute being

w2+y2+22+w2+,02=0 :

and the coordinates of the plane at mﬁmty e v.e., the reciprocals of the
radii of the five principal spheres. e
257. The coordinates (éplww) of any tangent sphere at the pom’o (@Y7 w'v’) must
satisfy
E 1 _ & e _ =
(a+k)a' ™ (b+k)y ™ (c+k)? ™ (@+k)w™ (e+kyw”
412
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Hence the equation to the tangent plane at the point («/yz'w'v’) is
/ / , , , by’ dw'
(x'ze+yy+22+wwtv v)< +-- -|-—~-|- + >

_(aacac+byg/+czz+dzvzv+e@v)< -|- + _|_ _|_ >

(278)
and the equations to the normal at the point (x'y’2"w'v’) are
x, Y, oz o w, v =0.. . . . . . (279
«, o, 2, w, v
ax, by, ¢, dw', e |
i 1 1 .1
Y Ty 7y 7 75
258. The five systems of bitangent spheres are given by:
=0, ;— + + i a+
7=0, f:z+~_— +;;":b+~i—=o
—_-1(), E + + —|—~—_ S e e (280)
w=0 _§_+L+_ & + ,?’_,,20
>a—d ' b—d ' e—d ' e—d
_go £ 8
=0, a——-e+b——e+c~—e+d—-e—oj
and the five systems of focal spheri-quadrics by
LS P
=0, =
b —a +““ s (281)

P24 0'=0
and similar equations. These curves have evidently, for their principal circles on the
sphere, the circles in which the sphere cuts the other principal spheres of the surface.

259. From the form of the equations of the focal curves, it is clear that any surface
represented by the equation

na

: ¥ —
a2+rc+ﬁ32+/c+ 2+/c+59 ctare=0 - (282)
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has the same principal spheres and the same focal curves as the surface
w?
2+@+2+y+
and subtracting, we have

2 o 22 w? )

2@ ) T BE T Tt T oe T E @

0,
and therefore the spheres whose coordinates are respectively proportional to

and
x Y 2 w v

al+i B4k P4’ B+ 4’

cut orthogonally ; but these spheres evidently touch the surfaces at a common point ;
hence, confocal cyclides cut orthogonally. And since the above equation (282) is a
cubic in k, it follows that through any point can be drawn three cyclides confocal with
a given cyclide, and these surfaces cut orthogonally.

Or, again, let us determine « so that (282) represents a cubic cyclide ; then we see
that.three cubic cyclides can, in general, be drawn having the same focal curves as a
given quartic cyclide, and these cubic cyclides cut orthogonally. Or, if the given
cyclide is a cubic cyclide, three quartic cyclides can be drawn with the same focal
curves through any point ; and two other cubic cychdes can also be drawn with the
same focal curves.

260. Let (énlww) be any sphere S ; this will cut orthogonally one of the bitangent
spheres at the point (2'y2'w'v’) of the surface

x4 by2+cz2+olw9+ en*=0,
(a—e)dé+(b—e)y'n+(c—e)2' {+(d—e)w' 0=0.

Hence, given any sphere 8, a series of bitangent spheres belonging to any system can
be drawn, cutting S orthogonally, their points of contact lying on the curve in which
the cyclide is cut by the sphere

(a-—e).fag+ (b—e)ny+(c—e)z+ (d—e)ow=0,

which may be called the polar sphere of S with respect to the cyclide.
There are five such polar spheres for any sphere S, each cutting one of the principal
spheres orthogonally, and each one clearly intersects S in points lying on the sphere

afx4-byy+cle+ dow+emv=0

if

i.e., the five polar spheres of any sphere have with 8 a common radical plane.
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261. If d=e, then the equation of the cyclide may be written
ax*+ by~ c*=0.

It has clearly two cnic-nodes : the points common to (x, %, ) ; and we have seen in
§ 254 that one of these spheres is imaginary. Also, the surface has three distinct
principal spheres ; but any pair of orthogonal spheres cutting (z, ¥, z) orthogonally
may clearly be considered as principal spheres. The case corresponds to that of a
quadric of revolution.

The coordinates of a bitangent sphere at the point (#'yZwv’) must satisfy the
equations

E 7 ¢ o w

(a+k)e ™~ b+k)y ~ (c+h)d k'™ I

There are only three systems of bitangent spheres, viz. :—

S T T
¢=0, a—b c—o+ @ =0

2 2 w2-1m2
77_—_0,6—%f+ =0 L. . . . . . . (283)
_o & 7 Pt ,
(=0, c—-a+c—b+ ¢ _OJ

The focal curves on the principal spheres will be circles ; they are given by

b ¢ R
—0 —— 2 2
x==0, P by +a cz =0

.=0, — 2+-z2 (284)

b—a

VY

=0, -2 2 _“2._
2=0, Y= 0_,

c—a

262. Again, if b=c, d=e¢, we have seen that the cyclide has four cnic-nodes, and
one principal sphere x, which is imaginary. There is one system of bitangent spheres,

given by

- ,,’2_'_:2 602"'0)'2_ _
£=0, a_b—|————a_d_0.. N 1:15))

263. Let us suppose now the radius of one of the principal spheres to be infinite,
say 75 ; the corresponding focal curve is a plane bicircular quartic, its equation being

2 2 2
T+bl_+%_~+'”i=o. C e ... (286)
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And this plane v=0 must clearly pass through the centres of the other spheres.
Suppose now this curve to represent a circular cubic, then

1 1 1 1 1 1 1 1
et L L L L. (287)

rPa—e  r2b—e rPc—e  r2d—e

The curve then passes through the centres of the principal spheres ; and since these
points will then satisfy the condition of being foci, the imaginary circle at infinity
must be a cuspidal edge on the cyclide. A cyclide of this nature is called a Cartesian.

264. If the coefficients of the equation

ax? by + e+ dw+ev* =0,
are connected by the relation

L=,

the surface represents a cubic cyclide.

Regarding this as the general cubic cyclide, we see that it passes through the
centres of its five principal spheres,

The equation of the tangent plane at the centre of the sphere x=0, being

(a;b)y-l-(“_c)z-l-(a_d)w+(a—e)v=0; coee . (288)
; ,

7y 7y 7y

which is clearly parallel to the plane
by dw  ev__
;;+7,2+¢3+ v +¢5——0.

Thus the tangent planes to the cyclide at the centres of its five principal spheres
are all parallel, and they may be regarded as the five tangent planes to the cubic from
the line at infinity on the surface.

(B.) General Nodal Cyclide.—§§ 265-271.

265. We have seen in § 253, that the equation of a cyclide having one node can be
expressed in the form

ax®+ by +c2*+dw*=0.

The system of reference being three orthogonal spheres (x, ¥, 2) and their two points
of intersection (w, v): so that the equation of the absolute is

B4yt tRA=4wv ;
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11111

the coordinates of the plane at infinity being —, —, —, -, =, where 7, 7y, 75 are the radii

vy 1y €€

of (x, v, z), and e the distance between (w, v). The point w=0 is a cnic-node.

266. The coordinates (€, 9, {, o, w) of any tangent sphere at the point (x'y2'wv’)

must satisfy
E 9 ¢ — 2 — 20

(a+k) ™ O+E)yY (c + k) = — 20 — 2

o1 7 7

So that the equation of the tangent plane at any point (x'y2"w'v’) is

<cwc "I‘_“ + + dw ) (w’w+y’y+ 2z —2uw'v—20"w)

={§+%+j w+vymmﬁ%y%+w%+deﬁ
1 2 3 )

and the equations of the normal at («'y"2'w'v’) are

x, Y, 2z, =20, —2w =0. .
®, y, 2, =2, —w
ax’, by, cZ, dw, 0

1t 1 2 _2

7y 7y € €

. M 8 jtes _d o o)
§=0; b—-—a+c—a,+ a =0

—_o. & §  dow _d o
=05 ot e =0

—. B jdew d o
{=0; a—c+b--c+ ¢ & @ _04

the focal curves are given by :
b ¢ d
—0- oy ° o % o
2=0; b—a? +c—a4 “w_O

Y242 —duwv=0

&

(289)

(290)

(291)

(292)

and similar equations. Thus the focal curves are nodal spheri-quadrics on the three

principal spheres.
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268. From the form of the equations of the focal curves we infer that all surfaces
represented by the equation
22 e 2 w
a2+k+32+k+q2+k+82 =0,

are confocal with the surface

P :'/2 22 w?
2Tt ate=0;

and we infer that given any cyclide having one ¢nic-node, through any point three
other cyclides can be drawn having the same node and the same focal curves: and
these cyclides cut orthogonally.

We also see, by choosing % so that

1 1 1 .11
a2+k;§+/y+w+fy kg e e

0,

that three cubic cyclides can be drawn having the same node and focal curves as a
given nodal quartic cyelide.
269. If we have b=c¢, we have seen that the equation

ax? + by b2+ du?=0
represents a trinodal cyclide, w=0 being one node : its equation may also be written

(a4b)2*+ dw+4bww=0,

or , ;
o'+ 2fwu=0,

where u is a sphere passing through the other nodes, but in this case the equation of
the absolute will not be so simple. Taking the first form of the equation we see that
the system of bitangent spheres is given by

2 2
g=0; TEE fom Lo o, L. L0 . (2938)

b—a a ot
and the corresponding focal curve by

x=0; -ﬂ-—gz(;:O,. o e (299)

which is a circle on the principal sphere =0,
270. If one of the principal spheres, say 2, become a plane, the corresponding focal
curve is a plane nodal bicircular quartic, and if it pass through the centres of the other

two principal spheres, we have
a 1 b 1 41 -
» a—c ;'—1_2+?)—-c e e =0 . (299)
MDCCCLXXXVT, 4 K



618 MR. R. LACHLAN ON SYSTEMS OF CIRCLES AND SPHERES.

and if this be satisfied the surface has the circle at infinity for a cuspidal edge ; and so
may be called a nodal-Cartesian.
271. If the coefficients in the equation

ax®+by? -2+ duw*=0,
are connected by the relation

a b ¢c . a
7"—12+’7'22+1;';§’+62—0’

the surface represents a nodal circular cubic. It clearly passes through the centres of
the three principal spheres, and the tangent planes at these points are parallel to the

plane

and so the tangent planes at the centres of the principal spheres are the tangent planes
drawn from the line at infinity on the surface.

(C.) Cyclides having a Binode.—S§§ 272-276.

272. The general equation of a cyclide having two principal spheres and a binode
can, by § 254, be expressed in the form

ax®+by*+ 2hzw=0 ;

the system of reference being the two principal spheres (x, y) and the sphere (z)
passing through the node (w), and cutting (x, y) orthogonally in the points (w, v), the

equation of the absolute being
By 2= 4w,

and the coordinates of the plane at infinity —, =, =, =, =

vy vy €€
273. The coordinates ({nlww) of any tangent sphere at the point (z'y'z
satisfy

sor !

wv’), must

f _ n C _ —2% _ — 2w

(a+kye ™ (b+ky ™ hw'+kd ™ he' =2k —2kw’

The equation of the tangent plane at the point (x'y z"w’v') will be
( +by +— -|- >(x’x+y’y—l—z'z—2w’v—2w’w)

<+ + gt >(axw+byy+hwz+hzw) . (296)
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The equations of the normals will be

x, v, =z —2v, —2w | =0.. . . . . (297
Z, 9': z/: —2 U’s - 2%'/ |
ax, by, hw hz, 0

11 12

" . 2 b
vy T €

Do

274. The two systems of bitangent spheres are given by

£=0; -’7_2,+é“’_m_M:0 1

b—a a a? |
(298)
o, & jhem (f+he) |
n=05 Lt B
and focal curves are given by
b 2h h? h
—0: ot e
2=0; I T L _O}
Y 42P2=4wv
and oo (299)
y=0; Ec_t—bmg—zl'zw—gwg:o}
Y42 =4dwv J

275. Let us supposé the sphere y to be of infinite radius, then the corresponding
focal curve will pass through the centre of the principal sphere «, when

a 1 21 R»*1
a———-?;;‘?_-h =0; . . . . . . . (300)

b (:‘7“3_? &
and then the surface will represent a Cartesian having a binode.

276. The surface
ax®+by*+ 2hzw=0

will represent a cubic cyclide, having a binode when
a b 2k
it =

In this case the surface passes through the centres of the two prineipal spheres (, ¥),
and the tangents at these points are parallel to the plane
W ohE =
n +h€+h’7,3_.0:

)

ax
—+
51

and so are the tangent planes drawn through the line at infinity on the surface.
4 X 2
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D. Nodal Cyclides, with One Principal Sphere.—§§ 277-280.

277. If the cyclide have only one principal sphere, we have seen, in § 255, that its
equation may be reduced to the form

ax+2hyz+dw*=0,

where « is the principal sphere, w the node, and( ¥, 2) two other spheres cutting « and
each other orthogonally, and cutting « in the points (w, ).
The equation of the absolute being

Xy 22 = 4w,

1 111
and the coordinates of the plane at 1nﬁmty ! s g o3 We have seen that the node
1 2 3
is in general a ¢nic-node; but it is a binode if ¢=0, and a unode if h=0.

278. The coordinates (énlww) of any tangent sphere at the point (wyzwv) must

satisfy ; ] \ )
. n —25  _ —20

@+l b +ky hy ke dw — 2 — 2w’

The equation of the tangent plane at (x'y'z’'w'v") will be

< + + +d”>( &' x4y 22— 2w'v—20/w)

=<——|-'—+i-—2w had )(ax’w+hy’z+kz’y+dww’). . . . . (801)
Ty Ty € :
The equations of the normal at (xy'Zwv’) are
oz oy oz —2v, —2w =0. . . . . (302)
| ®, vy, 2, =, —2u
( ax', hZ, hy, dw’, 0
;)11 2 2
Lo oy € €

279. The system of bitangent spheres is given by

a8+ 20t | de?
g=o, CEDAEME GOS0, ... (303)
and the corresponding focal curve is given by,

imm* ah
=0, 7+

wYt, Zur=0 1. (304)

2= duw
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280. If
2h d

a

ri o To=0

~ the surface represented by the equation
ax®+2hyz+dut=0,

will be a cubic surface, which passes through the centre of the principal sphere, the
tangent at which point is parallel to the plane

ax  hz  hy  dw
=0,

and therefore passes through the line on the surface at infinity,

CuAPTER VII.—Mi1scELLANEOUS THEOREMS.

Equation of a Cyclide referred to Four Spheres Orthogonol to a Principal Sphere.—
§§ 281-285.

281. Let the system of spheres (xyzwv) be such that v=0 is a principal sphere of a
cyclide ; then its equation must take the form

v+ (wyzw) =0,

and if » be orthogonal to the system (xyzw), then the equation of the absolute must
also be of the form

v+ flayzw)=90.

Hence, by subtraction, we see that the equatioh, of a cyclide can always be written
in the form . ‘
ax? 4 byP+ 22+ dw+ 2fyz+ 29z -+ 2hacy + 2lew+ 2myw+2nzw=0; . (305)

the system of reference being four spheres, points or planes orthogonal to a
principal sphere. ;

Now, the equation of any sphere orthogonal to this same principal sphere is of the
form

antBytyrtdw=0, . . . . . . . . (306)

where, by § 211, equation (222), &, B, v, § must be proportional to the tetrahedral
coordinates of the centre of the sphere, referred to the tetrahedron formed by the
centres of (wyzw), provided that (wxyzw) the coordinates of any point are the powers of
the point with respect to the system.
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Suppose now that the sphere given by (306) is a bitangent sphere of (305), then
clearly we must have

a, h, g, I, «a =0. . . . . . . (307)
h, b, f, m, B

9, fi ¢ m, vy
L om, n, d, 8

o, B, v, 6 0

Hence the locus of the centres of all bitangent spheres of the system orthogonal to
v=0 is the quadric surface given by (307). This surface is called by Casey the
“focal quadric.” We see that the focal curve on the principal sphere v=0 is the
curve of intersection of the sphere with the focal quadric.

282. The surface (305) is a cubic cyclide, if it is satisfied by the coordinates
(1,1, 1, 1) of the plane at infinity ; it follows that when this is the case the quadric
(807) is touched by the plane at infinity, and, therefore, the focal quadrics of cubic
cyclides are paraboloids.

283. If we take for our spheres of reference the other four principal spheres, the
equation of the cyclide takes the form

aw2+bby2-|'-cz2+dw2= 0,
and then the focal quadric is given by |

2

LA

so that the tetrahedron formed by the centres of any four principal spheres of a

cyclide is self-conjugate with respect to the focal quadric corresponding to the fifth.
284. In the case of a Cartesian, the focal quadrics must be spheres: hence, if

A, B, C, D be the centres of four bitangent spheres which we will take for our spheres

of reference, then since the focal quadric must be of the form
By +byatc*aft o ud-+ B8+ yd=0,

Whel*e oo; b, ¢, a',r ¥, ¢ are the sides of the tetra.hedrén ABCD, thé equatioh‘ of the
cyclide will be '

0, ¢ 0, o* ® |=0; . . . . . (308)
A 0, a6 b2 oy
v, o 0, - c¢? 2z
a? b % 0, w
x Y, % w, 0
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where (vyzw) are the squares of the tangents from any point P on the surface, to the
four bitangent spheres..

285. By § 260 we can draw a series of bitangent spheres belonging to each system
orthogonally to any sphere, and the points of contact of each series lie on a sphere
which cuts the principal sphere belonging to that series of bitangent spheres orthogo-
nally, and may be called the polar sphere of the given sphere with respect to the
cyclide. Now let (x, y, z) be any three bitangent spheres cutting a fixed sphere S
orthogonally, and let w be the corresponding polar sphere of S, the equation of the
cyclide must take the form

- P42 4022+ c%* — 2beyr — 2caze— 2abxy =0,
and the corresponding focal quadric will be

252 By w2 aB__

Sy B,

@ be ea ab

Thus the polar of the centre of w with respect to the quadric is the plane passing
through the centres of w, y, 2.

As a particular case we may suppose S replaced by the cetilre of the prmclpa,l
sphere, so that (z, y, ) become double tangent planes; the plane =0 is riow at an
infinite distarce, and so we see that the centre of the polar of the centre of the prin-
cipal sphere with respect to the cyclide is also the centre of the corresponding focal

quadric. And also the asymptotic cone of the quadric cuts orthogonally the double
tangent cone from the centre of the corresponding principal sphere.

Normals to a Cyclide from any Point. —§§ 286, 287,

286. The problem of drawing normals to a cyclide has been extensively discussed
by DarBoUX (‘ Sur une Classe remarquable de Courbes et de Surfaces Algébriques.’
Note XI.). To find the number of normals which can be drawn from any point he
proceeds thus :—

Let (é9lww) be aniy tangent sphere to the cyclide

aw2+5y2+cz2+dw2+602=0,
E _ n ¢ R I

then since

@tk (O+ky b @+ (+hp’
we have the equations

g2
a+k+b+7c

g < ® ot
(a+k)‘z+(b+k)2+(c+7c)2+(d+ic)2+(e+k)‘z“

&
Ic+d-| /c+e+7 0,
and
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Now suppose

E n = ; = ® ='—'E~—’
atpa’” BHuB T ytpy S+pd T etpe

then substituting and eliminating %, we have clearly an equation of the twelfth
degree in p; hence we infer that twelve spheres can be drawn through the circle

common to the spheres («Byd¢) («’/8y’8’¢) to touch the cyclide.
We may deduce from this that through any straight line can be drawn twelve
tangent planes to the cyclide, or a cyclide is in general of the twelfth class.

And, again, taking & 7, {, », = proportional to w+;’“—, y+§, z+f—, w—l—f, fv+f—
. 1 2 3 4 5
respectively, we see that twelve spheres can be drawn to touch the cyclide, having

their centres coincident with the point (zyzwv). Hence twelve normals can be drawn

to the cyclide from any point.
287. In §257, equations (279) give the normal at the point (x'y2w'v’) of the

“cyclide
ax® 4+ by 4 e+ dw*+ev®*=0,

WU

and we infer that the feet of the normals from the point (x'y’z"w'v’) lie on the cubic
surfaces :

ax, by, ¢z, dw, e | =0. . . . . . (309)
) y: 43 w; v

x/’ ?/’, Z/, ’UJ’, ’

1 1 1 1 1 |

ooy o s !

Now, =0 being the equation of the absolute referred to any system of spheres,
b1, Py, by any three cyclides ; let us form the discriminating quintic of

Ay +pucpyt+vods+ph=0;

then we can so choose the ratios A : pu:v:p that three of the roots of this quintic
shall be zero; and thus the equation will represent two spheres. To determine the

. A . . .
ratios r %, % we obtain three equations of the fifth, fourth, and third degrees respec-

tively. Hence through the common points of three cyclides a pair of spheres can be

drawn in sixty ways.
Let us suppose now that certain of the feet of the twelve normals from the point

(«'y’2"wv’) lie on the sphere

Ex+my+ L+ ow+mv=0,
then the rest must lie on another sphere which we may denote by

ax—+ By +yz+4 Sw+ev=0,
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and then it must be possible so to choose £ that the equation

k(ax?+ by +c2®+ dw+ ev?) = (ax+ By +yz+ dw+ ev)(éx+ny+ G+ ow+wv), . (310)

shall be identical with any one of the cubic cyclides given by (308). We have at once
then

af_Pn_vl_do_ew

a_b—c_d_czk'

Consequently through the feet of the twelve normals from (x')2w'v) can be drawn two
spheres, such that (éylw=) being the coordinates of one of them, =, =, = - ~ must be
Ty

proportional to the coordinates of the other.

Also equation (310) must represent a cubic: hence we must have

R e o e

nry wr,  wry

So that if the given surface is a cubic cyclide, one of these spheres on which the
feet of the normals lie must be of infinite radius.

MDCCCLXXXVI. 4 L



